Verilog to Routing XML file generation from Verilog (f4pga-v2x)¶
v2x is a tool for converting specialized annotated Verilog models into XML needed for Verilog to Routing flow.
Documentation can be found at https://f4pga-v2x.readthedocs.io/en/latest/.
Installation¶
v2x can be installed from a local git repository using pip.
cd f4pga-v2x
pip install .
Alternatively, it can be installed from GitHub directly.
pip install git+https://github.com/chipsalliance/f4pga-v2x.git#egg=f4pga-v2x
Usage¶
After installing v2x, you can run v2x
to use it.
v2x -h
usage: __main__.py [-h] [--top TOP] [--outfile OUTFILE] [--includes INCLUDES]
[--mode {pb_type,model}]
input.v [input.v ...]
Verilog to XML
positional arguments:
input.v One or more Verilog input files, that will be passed
to Yosys internally. They should be enough to generate
a flattened representation of the model, so that paths
through the model can be determined.
optional arguments:
-h, --help show this help message and exit
--top TOP Top level module, will usually be automatically
determined from the file name im.v
--outfile OUTFILE, -o OUTFILE
Output filename, default 'output.xml'
--includes INCLUDES Comma separate list of include directories.
--mode {pb_type,model}
Output file type, possible values are: pb_type and
model. Default value is pb_type
For example, to generate a pb_type xml file from adder.v, run
v2x -o adder.pb_type.xml adder.v
Or, to generate a model xml file, run
v2x --mode model -o adder.model.xml adder.v
v2x expects the module name to be the same as the file name. If it is different, make sure to specifiy it with the --top
argument.
v2x --top BLOCK -o adder.pb_type.xml adder.v
Tests¶
The test cases are stored in tests/, and pytest can be used to run them.
rm -rf build # run this step so that pytest uses the latest files for the tests
pytest -vv
If you are making changes to any python code, make sure that they follow the PEP8 style guide by running flake8.
flake8 tests
flake8 v2x
Documentation¶
We use sphinx for our documentation and the files are stored in docs/. To host it locally (if you are planning to update it), you can use the Makefile inside.
First, run make env
to prepare a Conda environment that contains the necessary packages to build and host the documentation site. After that, simply run make livehtml
which starts a local server running at port 8000 with the documentation site.
cd docs
make env
make livehtml
Talks¶
VPR device models generation from Verilog with V2X - Karol Gugala - ORConf 2019

Examples¶
Here we have examples on how v2x converts a Verilog module to its corresponding model.xml and pb_type.xml files. These examples are taken from the v2x test cases.
Clock multiplexing primitive¶
This is an example of modeling a clock mux/buffer which utilizes both clock inputs and clock outputs.
By default, clocks are excluded from the combinational sink list. IE They do not have combinational_sink_ports property associated with them. However, clock multiplexers violate this rule as their input clocks do not drive any sequential logic. They are passed to output(s) instead. VPR requires Clock buffers & muxes to be defined in this way.
V2X provides the attribute (* COMB_INCLUDE_CLOCKS *) that when specified on an output port makes appear on the combinational_sink_ports list of its related input port(s) even if it is marked as a clock input.
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 | // A model of a clock multiplexer with two clock inputs, one clock output and
// a select input.
(* whitebox *)
module GMUX (IP, IC, IS0, IZ);
// 1st clock input
(* CLOCK *)
input wire IP;
// 2nd clock input
(* CLOCK *)
input wire IC;
// Select input
input wire IS0;
// Clock output (has to be defined as a regular output port)
(* DELAY_CONST_IP="1e-10" *)
(* DELAY_CONST_IC="2e-10" *)
(* DELAY_CONST_IS0="3e-10" *)
(* COMB_INCLUDE_CLOCKS *)
output wire IZ;
// Behavioral model:
assign IZ = IS0 ? IC : IP;
endmodule
|
In this example the (* COMB_INCLUDE_CLOCKS *) attribute is set on the IZ output making it appear in combinational sinks lists of its associated clock input ports.
<?xml version="1.0"?>
<models>
<model name="GMUX">
<input_ports>
<port combinational_sink_ports="IZ" is_clock="1" name="IC"/>
<port combinational_sink_ports="IZ" is_clock="1" name="IP"/>
<port combinational_sink_ports="IZ" name="IS0"/>
</input_ports>
<output_ports>
<port name="IZ"/>
</output_ports>
</model>
</models>
<?xml version="1.0"?>
<pb_type xmlns:xi="http://www.w3.org/2001/XInclude" blif_model=".subckt GMUX" name="GMUX" num_pb="1">
<clock name="IC" num_pins="1"/>
<clock name="IP" num_pins="1"/>
<input name="IS0" num_pins="1"/>
<output name="IZ" num_pins="1"/>
<delay_constant in_port="GMUX.IC" max="2e-10" out_port="GMUX.IZ"/>
<delay_constant in_port="GMUX.IP" max="1e-10" out_port="GMUX.IZ"/>
<delay_constant in_port="GMUX.IS0" max="3e-10" out_port="GMUX.IZ"/>
</pb_type>
Clock¶
There are various ways for an input or output port to be detected as a clock by v2x. Here are examples on ways to do so.
Autodetection of clock from flipflop¶
D-Flipflop with one clock¶
The following shows a simple D-flip flop driven by one clock. input wire a
should be detected as a clock because it drives the flip flop.
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 | /*
* `input wire a` should be detected as a clock because it drives the flip
* flop.
*/
module BLOCK(a, b, c);
input wire a;
input wire b;
output wire c;
reg r;
always @ ( posedge a ) begin
r <= b;
end
assign c = r;
endmodule
|
As you can see in the generated model, the is_clock
attribute of the a
port is set to 1, while the b
and c
ports have their clock
attribute set to a
.
<?xml version="1.0"?>
<models>
<model name="BLOCK">
<input_ports>
<port is_clock="1" name="a"/>
<port clock="a" name="b"/>
</input_ports>
<output_ports>
<port clock="a" name="c"/>
</output_ports>
</model>
</models>
D-Flipflop with combinational logic¶
The following shows a combinational logic design driven by a clock. input wire a
should be detected as a clock because it drives the flip flop.
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 | /*
* `input wire a` should be detected as a clock because it drives the flip
* flop.
*/
module BLOCK(a, b, c, d);
input wire a;
input wire b;
input wire c;
output wire d;
reg r;
always @ ( posedge a ) begin
r <= b | ~c;
end
assign d = r;
endmodule
|
The is_clock
attribute of the a
port is set to 1, and the ports b
, c
and d
have their clock
attribute set to a
.
<?xml version="1.0"?>
<models>
<model name="BLOCK">
<input_ports>
<port is_clock="1" name="a"/>
<port clock="a" combinational_sink_ports="d" name="b"/>
<port clock="a" combinational_sink_ports="d" name="c"/>
</input_ports>
<output_ports>
<port clock="a" name="d"/>
</output_ports>
</model>
</models>
D-Flipflop with two clocks¶
input wire c1
and input wire c2
should be detected as clocks because they drive the flip flop.
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 | module BLOCK(c1, c2, a, b, c, o1, o2);
input wire c1;
input wire c2;
input wire a;
input wire b;
input wire c;
output wire o1;
output wire o2;
reg r1;
reg r2;
always @ ( posedge c1 ) begin
r1 <= a | b;
end
always @ ( posedge c2 ) begin
r2 <= b | c;
end
assign o1 = r1;
assign o2 = r2;
endmodule
|
The is_clock
attribute of the c1
and c2
ports are set to 1, and the ports a
, b
, c
, o1
and o2
have their clock
attribute set to the respective clocks they are driven by.
<?xml version="1.0"?>
<models>
<model name="BLOCK">
<input_ports>
<port clock="c1" combinational_sink_ports="o1" name="a"/>
<port clock="c2 c1" combinational_sink_ports="o2 o1" name="b"/>
<port clock="c2" combinational_sink_ports="o2" name="c"/>
<port is_clock="1" name="c1"/>
<port is_clock="1" name="c2"/>
</input_ports>
<output_ports>
<port clock="c1" name="o1"/>
<port clock="c2" name="o2"/>
</output_ports>
</model>
</models>
Manually set inputs as clock¶
Manually set input as clock by setting the CLOCK attribute¶
The following shows that input wire a
is given the (* CLOCK *)
attribute.
19 20 21 22 23 24 25 26 27 28 29 | /*
* `input wire a` should be detected as a clock because of the `(* CLOCK *)`
* attribute.
*/
(* whitebox *)
module BLOCK(a, b, o);
(* CLOCK *)
input wire a;
input wire b;
output wire o;
endmodule
|
As such, the is_clock
attribute of the a
port is set to 1.
<?xml version="1.0"?>
<models>
<model name="BLOCK">
<input_ports>
<port is_clock="1" name="a"/>
<port name="b"/>
</input_ports>
<output_ports>
<port name="o"/>
</output_ports>
</model>
</models>
Force input as regular input by setting the CLOCK attribute¶
input wire a
should be detected as a clock because it drives the flip flop. However, it has the attribute CLOCK set to 0 which should force it to be a regular input.
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 | /*
* `input wire a` should be detected as a clock because it drives the flip
* flop. However, it has the attribute CLOCK set to 0 which should force it
* to be a regular input.
*/
module BLOCK(a, b, c);
(* CLOCK=0 *)
input wire a;
input wire b;
output wire c;
reg r;
always @ ( posedge a ) begin
r <= b;
end
assign c = r;
endmodule
|
As such, the is_clock
attribute of the a
port is not set.
<?xml version="1.0"?>
<models>
<model name="BLOCK">
<input_ports>
<port clock="a" combinational_sink_ports="c" name="a"/>
<port clock="a" name="b"/>
</input_ports>
<output_ports>
<port clock="a" name="c"/>
</output_ports>
</model>
</models>
<?xml version="1.0"?>
<pb_type xmlns:xi="http://www.w3.org/2001/XInclude" blif_model=".subckt BLOCK" name="BLOCK" num_pb="1">
<input name="a" num_pins="1"/>
<input name="b" num_pins="1"/>
<output name="c" num_pins="1"/>
</pb_type>
Set input as clock by name (clk)¶
An input wire can be set as a clock by assigning clk
as its name.
19 20 21 22 23 24 25 26 27 28 | /*
* `input wire clk` should be detected as a clock despite this being a black
* box module.
*/
(* whitebox *)
module BLOCK(clk, a, o);
input wire clk;
input wire a;
output wire o;
endmodule
|
As such, the is_clock
attribute of the clk
port is set to 1, without needing to set anything else in the verilog code.
<?xml version="1.0"?>
<models>
<model name="BLOCK">
<input_ports>
<port name="a"/>
<port is_clock="1" name="clk"/>
</input_ports>
<output_ports>
<port name="o"/>
</output_ports>
</model>
</models>
Set input as clock by name (regex)¶
An input wire can be set as a clock by having clk
in its name (case insensitive).
19 20 21 22 23 24 25 26 27 28 29 30 31 32 | (* whitebox *)
module BLOCK(
input wire clk,
input wire Clk,
input wire CLK,
input wire clkX,
input wire clkBus,
input wire sys_clk,
input wire sys_clk10,
input wire regular_input,
output wire o
);
endmodule
|
As such, the is_clock
attribute of wires with a variation of clk
in their name is set to 1.
<?xml version="1.0"?>
<models>
<model name="BLOCK">
<input_ports>
<port is_clock="1" name="CLK"/>
<port is_clock="1" name="Clk"/>
<port is_clock="1" name="clk"/>
<port is_clock="1" name="clkBus"/>
<port is_clock="1" name="clkX"/>
<port name="regular_input"/>
<port is_clock="1" name="sys_clk"/>
<port is_clock="1" name="sys_clk10"/>
</input_ports>
<output_ports>
<port name="o"/>
</output_ports>
</model>
</models>
<?xml version="1.0"?>
<pb_type xmlns:xi="http://www.w3.org/2001/XInclude" blif_model=".subckt BLOCK" name="BLOCK" num_pb="1">
<clock name="CLK" num_pins="1"/>
<clock name="Clk" num_pins="1"/>
<clock name="clk" num_pins="1"/>
<clock name="clkBus" num_pins="1"/>
<clock name="clkX" num_pins="1"/>
<clock name="sys_clk" num_pins="1"/>
<clock name="sys_clk10" num_pins="1"/>
<input name="regular_input" num_pins="1"/>
<output name="o" num_pins="1"/>
</pb_type>
Manually set outputs as clock¶
Manually set output as clock by setting the CLOCK attribute¶
The following shows that output wire o
is given the (* CLOCK *)
attribute.
19 20 21 22 23 24 25 26 27 28 29 | /*
* `output wire o` should be detected as a clock because of the `(* CLOCK *)`
* attribute.
*/
(* whitebox *)
module BLOCK(a, b, o);
input wire a;
input wire b;
(* CLOCK *)
output wire o;
endmodule
|
As such, the is_clock
attribute of the o
port is set to 1.
<?xml version="1.0"?>
<models>
<model name="BLOCK">
<input_ports>
<port name="a"/>
<port name="b"/>
</input_ports>
<output_ports>
<port is_clock="1" name="o"/>
</output_ports>
</model>
</models>
Set output as clock by name (clk)¶
An output wire can be set as a clock by assigning clk
as its name.
19 20 21 22 23 24 25 26 27 28 | /*
* `output wire clk` should be detected as a clock despite this being a black
* box module.
*/
(* whitebox *)
module BLOCK(a, b, clk);
input wire a;
input wire b;
output wire clk;
endmodule
|
As such, the is_clock
attribute of the clk
output port is set to 1.
<?xml version="1.0"?>
<models>
<model name="BLOCK">
<input_ports>
<port name="a"/>
<port name="b"/>
</input_ports>
<output_ports>
<port is_clock="1" name="clk"/>
</output_ports>
</model>
</models>
Multiple clocks¶
Set inputs as clock by name (multiple clock inputs)¶
input wire rdclk
and input wire wrclk
have clk
in their names, hence are recognized as clock inputs by v2x.
19 20 21 22 23 24 25 26 27 28 29 30 31 | /*
* `input wire rdclk` and `input wire wrclk` should be detected as a clock
* despite this being a black box module.
*/
(* whitebox *)
module BLOCK(a, rdclk, b, wrclk, c, o);
input wire a;
input wire rdclk;
input wire b;
input wire wrclk;
input wire c;
output wire o;
endmodule
|
As such, the is_clock
attribute of the rdclk
and wrclk
ports are set to 1.
<?xml version="1.0"?>
<models>
<model name="BLOCK">
<input_ports>
<port name="a"/>
<port name="b"/>
<port name="c"/>
<port is_clock="1" name="rdclk"/>
<port is_clock="1" name="wrclk"/>
</input_ports>
<output_ports>
<port name="o"/>
</output_ports>
</model>
</models>
Set outputs as clock by name (multiple clock outputs)¶
output wire rdclk
and output wire wrclk
have clk
in their names, hence are recognized as clock inputs by v2x.
19 20 21 22 23 24 25 26 27 28 29 30 | /*
* `output wire rdclk` and `output wire wrclk` should be detected as a clock
* despite this being a black box module.
*/
(* whitebox *)
module BLOCK(a, b, rdclk, o, wrclk);
input wire a;
input wire b;
output wire rdclk;
output wire o;
output wire wrclk;
endmodule
|
As such, the is_clock
attribute of the rdclk
and wrclk
ports are set to 1.
<?xml version="1.0"?>
<models>
<model name="BLOCK">
<input_ports>
<port name="a"/>
<port name="b"/>
</input_ports>
<output_ports>
<port name="o"/>
<port is_clock="1" name="rdclk"/>
<port is_clock="1" name="wrclk"/>
</output_ports>
</model>
</models>
DSP examples¶
These are examples of modeling DSP-like complex primitives
Combinational DSP¶
A combinational DSP block capable of multiplication and division. Modeled as “combinational block” according to Figure 60
of Primitive Block Timing Modeling Tutorial.
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 | `ifndef DSP_COMB
`define DSP_COMB
(* whitebox *)
module DSP_COMBINATIONAL (
a, b, m,
out
);
localparam DATA_WIDTH = 4;
input wire [DATA_WIDTH/2-1:0] a;
input wire [DATA_WIDTH/2-1:0] b;
input wire m;
(* DELAY_CONST_a="30e-12" *)
(* DELAY_CONST_b="30e-12" *)
(* DELAY_CONST_m="10e-12" *)
output wire [DATA_WIDTH-1:0] out;
// Full adder combinational logic
assign out = m ? a * b : a / b;
endmodule
`endif
|
1 2 3 4 5 6 7 8 9 10 11 12 13 | <?xml version="1.0"?>
<models>
<model name="DSP_COMBINATIONAL">
<input_ports>
<port combinational_sink_ports="out" name="a"/>
<port combinational_sink_ports="out" name="b"/>
<port combinational_sink_ports="out" name="m"/>
</input_ports>
<output_ports>
<port name="out"/>
</output_ports>
</model>
</models>
|
1 2 3 4 5 6 7 8 9 10 | <?xml version="1.0"?>
<pb_type xmlns:xi="http://www.w3.org/2001/XInclude" blif_model=".subckt DSP_COMBINATIONAL" name="DSP_COMBINATIONAL" num_pb="1">
<input name="a" num_pins="2"/>
<input name="b" num_pins="2"/>
<input name="m" num_pins="1"/>
<output name="out" num_pins="4"/>
<delay_constant in_port="DSP_COMBINATIONAL.a" max="30e-12" out_port="DSP_COMBINATIONAL.out"/>
<delay_constant in_port="DSP_COMBINATIONAL.b" max="30e-12" out_port="DSP_COMBINATIONAL.out"/>
<delay_constant in_port="DSP_COMBINATIONAL.m" max="10e-12" out_port="DSP_COMBINATIONAL.out"/>
</pb_type>
|
Detection of combinational connections¶
Output has combinational connection with input
Blackbox detection¶
Model of the leaf
pb_type
is generatedLeaf
pb_type
XML is generated
DSP-style block with all inputs registered¶
A combinational DSP block with registered inputs. Modeled as a complex block.
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 | `include "./dff/dff.sim.v"
`include "./dsp_combinational/dsp_combinational.sim.v"
/* DSP Block with register on all inputs */
module DSP_IN_REGISTERED (clk, a, b, m, out);
localparam DATA_WIDTH = 4;
input wire clk;
input wire [DATA_WIDTH/2-1:0] a;
input wire [DATA_WIDTH/2-1:0] b;
input wire m;
output wire [DATA_WIDTH-1:0] out;
/* Input registers */
(* pack="DFF2DSP" *)
wire [DATA_WIDTH/2-1:0] q_a;
(* pack="DFF2DSP" *)
wire [DATA_WIDTH/2-1:0] q_b;
(* pack="DFF2DSP" *)
wire q_m;
genvar i;
for (i=0; i<DATA_WIDTH/2; i=i+1) begin
DFF q_a_ff(.D(a[i]), .Q(q_a[i]), .CLK(clk));
DFF q_b_ff(.D(b[i]), .Q(q_b[i]), .CLK(clk));
end
DFF m_ff(.D(m), .Q(q_m), .CLK(clk));
/* Combinational Logic */
DSP_COMBINATIONAL comb (.a(q_a), .b(q_b), .m(q_m), .out(out));
endmodule
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 | <?xml version="1.0"?>
<models>
<model name="DFF">
<input_ports>
<port is_clock="1" name="CLK"/>
<port clock="CLK" name="D"/>
</input_ports>
<output_ports>
<port clock="CLK" name="Q"/>
</output_ports>
</model>
<model name="DSP_COMBINATIONAL">
<input_ports>
<port combinational_sink_ports="out" name="a"/>
<port combinational_sink_ports="out" name="b"/>
<port combinational_sink_ports="out" name="m"/>
</input_ports>
<output_ports>
<port name="out"/>
</output_ports>
</model>
</models>
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 | <?xml version="1.0"?>
<pb_type xmlns:xi="http://www.w3.org/2001/XInclude" name="DSP_IN_REGISTERED" num_pb="1">
<clock name="clk" num_pins="1"/>
<input name="a" num_pins="2"/>
<input name="b" num_pins="2"/>
<input name="m" num_pins="1"/>
<output name="out" num_pins="4"/>
<pb_type blif_model=".subckt DSP_COMBINATIONAL" name="comb" num_pb="1">
<input name="a" num_pins="2"/>
<input name="b" num_pins="2"/>
<input name="m" num_pins="1"/>
<output name="out" num_pins="4"/>
<delay_constant in_port="DSP_COMBINATIONAL.a" max="30e-12" out_port="DSP_COMBINATIONAL.out"/>
<delay_constant in_port="DSP_COMBINATIONAL.b" max="30e-12" out_port="DSP_COMBINATIONAL.out"/>
<delay_constant in_port="DSP_COMBINATIONAL.m" max="10e-12" out_port="DSP_COMBINATIONAL.out"/>
</pb_type>
<pb_type blif_model=".subckt DFF" name="m_ff" num_pb="1">
<clock name="CLK" num_pins="1"/>
<input name="D" num_pins="1"/>
<output name="Q" num_pins="1"/>
<T_setup clock="CLK" port="DFF.D" value="10e-12"/>
<T_hold clock="CLK" port="DFF.D" value="10e-12"/>
<T_clock_to_Q clock="CLK" max="10e-12" port="DFF.Q"/>
</pb_type>
<pb_type blif_model=".subckt DFF" name="q_a_ff" num_pb="2">
<clock name="CLK" num_pins="1"/>
<input name="D" num_pins="1"/>
<output name="Q" num_pins="1"/>
<T_setup clock="CLK" port="DFF.D" value="10e-12"/>
<T_hold clock="CLK" port="DFF.D" value="10e-12"/>
<T_clock_to_Q clock="CLK" max="10e-12" port="DFF.Q"/>
</pb_type>
<pb_type blif_model=".subckt DFF" name="q_b_ff" num_pb="2">
<clock name="CLK" num_pins="1"/>
<input name="D" num_pins="1"/>
<output name="Q" num_pins="1"/>
<T_setup clock="CLK" port="DFF.D" value="10e-12"/>
<T_hold clock="CLK" port="DFF.D" value="10e-12"/>
<T_clock_to_Q clock="CLK" max="10e-12" port="DFF.Q"/>
</pb_type>
<interconnect>
<direct input="comb.out[0]" name="DSP_IN_REGISTERED-out[0]" output="DSP_IN_REGISTERED.out[0]"/>
<direct input="comb.out[1]" name="DSP_IN_REGISTERED-out[1]" output="DSP_IN_REGISTERED.out[1]"/>
<direct input="comb.out[2]" name="DSP_IN_REGISTERED-out[2]" output="DSP_IN_REGISTERED.out[2]"/>
<direct input="comb.out[3]" name="DSP_IN_REGISTERED-out[3]" output="DSP_IN_REGISTERED.out[3]"/>
<direct input="q_a_ff[0].Q" name="comb-a[0]" output="comb.a[0]">
<pack_pattern in_port="q_a_ff[0].Q" name="pack-DFF2DSP" out_port="comb.a[0]"/>
</direct>
<direct input="q_a_ff[1].Q" name="comb-a[1]" output="comb.a[1]">
<pack_pattern in_port="q_a_ff[1].Q" name="pack-DFF2DSP" out_port="comb.a[1]"/>
</direct>
<direct input="q_b_ff[0].Q" name="comb-b[0]" output="comb.b[0]">
<pack_pattern in_port="q_b_ff[0].Q" name="pack-DFF2DSP" out_port="comb.b[0]"/>
</direct>
<direct input="q_b_ff[1].Q" name="comb-b[1]" output="comb.b[1]">
<pack_pattern in_port="q_b_ff[1].Q" name="pack-DFF2DSP" out_port="comb.b[1]"/>
</direct>
<direct input="m_ff.Q" name="comb-m" output="comb.m">
<pack_pattern in_port="m_ff.Q" name="pack-DFF2DSP" out_port="comb.m"/>
</direct>
<direct input="DSP_IN_REGISTERED.clk" name="m_ff-CLK" output="m_ff.CLK"/>
<direct input="DSP_IN_REGISTERED.m" name="m_ff-D" output="m_ff.D"/>
<direct input="DSP_IN_REGISTERED.clk" name="q_a_ff[0]-CLK" output="q_a_ff[0].CLK"/>
<direct input="DSP_IN_REGISTERED.a[0]" name="q_a_ff[0]-D" output="q_a_ff[0].D"/>
<direct input="DSP_IN_REGISTERED.clk" name="q_a_ff[1]-CLK" output="q_a_ff[1].CLK"/>
<direct input="DSP_IN_REGISTERED.a[1]" name="q_a_ff[1]-D" output="q_a_ff[1].D"/>
<direct input="DSP_IN_REGISTERED.clk" name="q_b_ff[0]-CLK" output="q_b_ff[0].CLK"/>
<direct input="DSP_IN_REGISTERED.b[0]" name="q_b_ff[0]-D" output="q_b_ff[0].D"/>
<direct input="DSP_IN_REGISTERED.clk" name="q_b_ff[1]-CLK" output="q_b_ff[1].CLK"/>
<direct input="DSP_IN_REGISTERED.b[1]" name="q_b_ff[1]-D" output="q_b_ff[1].D"/>
</interconnect>
</pb_type>
|
Detection of combinational connections¶
Output has combinational connection with input
pack_pattern
defined on wire connections withpack
attribute
Blackbox detection¶
Model of the leaf
pb_type
is generatedLeaf
pb_type
XML is generatedAll dependency models and
pb_type
s are included in the output files
DSP-style block with outputs registered¶
A combinational DSP block with registered outputs. Modeled as a complex block.
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 | `include "./dff/dff.sim.v"
`include "./dsp_combinational/dsp_combinational.sim.v"
/* DSP Block with register on the output */
module DSP_OUT_REGISTERED (clk, a, b, m, out);
localparam DATA_WIDTH = 4;
input wire clk;
input wire [DATA_WIDTH/2-1:0] a;
input wire [DATA_WIDTH/2-1:0] b;
input wire m;
output wire [DATA_WIDTH-1:0] out;
/* Combinational logic */
(* pack="DSP-DFF" *)
wire [DATA_WIDTH-1:0] c_out;
DSP_COMBINATIONAL comb (.a(a), .b(b), .m(m), .out(c_out));
/* Output register on clk */
genvar j;
for (j=0; j<DATA_WIDTH; j=j+1) begin: output_dffs_gen
DFF q_out_ff(.D(c_out[j]), .Q(out[j]), .CLK(clk));
end
endmodule
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 | <?xml version="1.0"?>
<models>
<model name="DFF">
<input_ports>
<port is_clock="1" name="CLK"/>
<port clock="CLK" name="D"/>
</input_ports>
<output_ports>
<port clock="CLK" name="Q"/>
</output_ports>
</model>
<model name="DSP_COMBINATIONAL">
<input_ports>
<port combinational_sink_ports="out" name="a"/>
<port combinational_sink_ports="out" name="b"/>
<port combinational_sink_ports="out" name="m"/>
</input_ports>
<output_ports>
<port name="out"/>
</output_ports>
</model>
</models>
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 | <?xml version="1.0"?>
<pb_type xmlns:xi="http://www.w3.org/2001/XInclude" name="DSP_OUT_REGISTERED" num_pb="1">
<clock name="clk" num_pins="1"/>
<input name="a" num_pins="2"/>
<input name="b" num_pins="2"/>
<input name="m" num_pins="1"/>
<output name="out" num_pins="4"/>
<pb_type blif_model=".subckt DSP_COMBINATIONAL" name="comb" num_pb="1">
<input name="a" num_pins="2"/>
<input name="b" num_pins="2"/>
<input name="m" num_pins="1"/>
<output name="out" num_pins="4"/>
<delay_constant in_port="DSP_COMBINATIONAL.a" max="30e-12" out_port="DSP_COMBINATIONAL.out"/>
<delay_constant in_port="DSP_COMBINATIONAL.b" max="30e-12" out_port="DSP_COMBINATIONAL.out"/>
<delay_constant in_port="DSP_COMBINATIONAL.m" max="10e-12" out_port="DSP_COMBINATIONAL.out"/>
</pb_type>
<pb_type blif_model=".subckt DFF" name="output_dffs_gen_q_out_ff_0" num_pb="1">
<clock name="CLK" num_pins="1"/>
<input name="D" num_pins="1"/>
<output name="Q" num_pins="1"/>
<T_setup clock="CLK" port="DFF.D" value="10e-12"/>
<T_hold clock="CLK" port="DFF.D" value="10e-12"/>
<T_clock_to_Q clock="CLK" max="10e-12" port="DFF.Q"/>
</pb_type>
<pb_type blif_model=".subckt DFF" name="output_dffs_gen_q_out_ff_1" num_pb="1">
<clock name="CLK" num_pins="1"/>
<input name="D" num_pins="1"/>
<output name="Q" num_pins="1"/>
<T_setup clock="CLK" port="DFF.D" value="10e-12"/>
<T_hold clock="CLK" port="DFF.D" value="10e-12"/>
<T_clock_to_Q clock="CLK" max="10e-12" port="DFF.Q"/>
</pb_type>
<pb_type blif_model=".subckt DFF" name="output_dffs_gen_q_out_ff_2" num_pb="1">
<clock name="CLK" num_pins="1"/>
<input name="D" num_pins="1"/>
<output name="Q" num_pins="1"/>
<T_setup clock="CLK" port="DFF.D" value="10e-12"/>
<T_hold clock="CLK" port="DFF.D" value="10e-12"/>
<T_clock_to_Q clock="CLK" max="10e-12" port="DFF.Q"/>
</pb_type>
<pb_type blif_model=".subckt DFF" name="output_dffs_gen_q_out_ff_3" num_pb="1">
<clock name="CLK" num_pins="1"/>
<input name="D" num_pins="1"/>
<output name="Q" num_pins="1"/>
<T_setup clock="CLK" port="DFF.D" value="10e-12"/>
<T_hold clock="CLK" port="DFF.D" value="10e-12"/>
<T_clock_to_Q clock="CLK" max="10e-12" port="DFF.Q"/>
</pb_type>
<interconnect>
<direct input="output_dffs_gen_q_out_ff_0.Q" name="DSP_OUT_REGISTERED-out[0]" output="DSP_OUT_REGISTERED.out[0]"/>
<direct input="output_dffs_gen_q_out_ff_1.Q" name="DSP_OUT_REGISTERED-out[1]" output="DSP_OUT_REGISTERED.out[1]"/>
<direct input="output_dffs_gen_q_out_ff_2.Q" name="DSP_OUT_REGISTERED-out[2]" output="DSP_OUT_REGISTERED.out[2]"/>
<direct input="output_dffs_gen_q_out_ff_3.Q" name="DSP_OUT_REGISTERED-out[3]" output="DSP_OUT_REGISTERED.out[3]"/>
<direct input="DSP_OUT_REGISTERED.a[0]" name="comb-a[0]" output="comb.a[0]"/>
<direct input="DSP_OUT_REGISTERED.a[1]" name="comb-a[1]" output="comb.a[1]"/>
<direct input="DSP_OUT_REGISTERED.b[0]" name="comb-b[0]" output="comb.b[0]"/>
<direct input="DSP_OUT_REGISTERED.b[1]" name="comb-b[1]" output="comb.b[1]"/>
<direct input="DSP_OUT_REGISTERED.m" name="comb-m" output="comb.m"/>
<direct input="DSP_OUT_REGISTERED.clk" name="output_dffs_gen_q_out_ff_0-CLK" output="output_dffs_gen_q_out_ff_0.CLK"/>
<direct input="comb.out[0]" name="output_dffs_gen_q_out_ff_0-D" output="output_dffs_gen_q_out_ff_0.D">
<pack_pattern in_port="comb.out[0]" name="pack-DSP-DFF" out_port="output_dffs_gen_q_out_ff_0.D"/>
</direct>
<direct input="DSP_OUT_REGISTERED.clk" name="output_dffs_gen_q_out_ff_1-CLK" output="output_dffs_gen_q_out_ff_1.CLK"/>
<direct input="comb.out[1]" name="output_dffs_gen_q_out_ff_1-D" output="output_dffs_gen_q_out_ff_1.D">
<pack_pattern in_port="comb.out[1]" name="pack-DSP-DFF" out_port="output_dffs_gen_q_out_ff_1.D"/>
</direct>
<direct input="DSP_OUT_REGISTERED.clk" name="output_dffs_gen_q_out_ff_2-CLK" output="output_dffs_gen_q_out_ff_2.CLK"/>
<direct input="comb.out[2]" name="output_dffs_gen_q_out_ff_2-D" output="output_dffs_gen_q_out_ff_2.D">
<pack_pattern in_port="comb.out[2]" name="pack-DSP-DFF" out_port="output_dffs_gen_q_out_ff_2.D"/>
</direct>
<direct input="DSP_OUT_REGISTERED.clk" name="output_dffs_gen_q_out_ff_3-CLK" output="output_dffs_gen_q_out_ff_3.CLK"/>
<direct input="comb.out[3]" name="output_dffs_gen_q_out_ff_3-D" output="output_dffs_gen_q_out_ff_3.D">
<pack_pattern in_port="comb.out[3]" name="pack-DSP-DFF" out_port="output_dffs_gen_q_out_ff_3.D"/>
</direct>
</interconnect>
</pb_type>
|
Detection of combinational connections¶
Output has combinational connection with input
pack_pattern
defined on wire connections withpack
attribute
Blackbox detection¶
Model of the leaf
pb_type
is generatedLeaf
pb_type
XML is generatedAll dependency models and
pb_type
s are included in the output files
DSP-style block with inputs and outputs registered (single clock)¶
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 | `include "./dff/dff.sim.v"
`include "./dsp_combinational/dsp_combinational.sim.v"
/* DSP Block with register on both the inputs and the output */
module DSP_INOUT_REGISTERED (clk, a, b, m, out);
localparam DATA_WIDTH = 4;
input wire clk;
input wire [DATA_WIDTH/2-1:0] a;
input wire [DATA_WIDTH/2-1:0] b;
input wire m;
output wire [DATA_WIDTH-1:0] out;
/* Input registers */
(* pack = "DFF-DSP" *)
wire [DATA_WIDTH/2-1:0] q_a;
(* pack = "DFF-DSP" *)
wire [DATA_WIDTH/2-1:0] q_b;
(* pack = "DFF-DSP" *)
wire q_m;
genvar i;
for (i=0; i<DATA_WIDTH/2; i=i+1) begin: input_dffs_gen
DFF q_a_ff(.D(a[i]), .Q(q_a[i]), .CLK(clk));
DFF q_b_ff(.D(b[i]), .Q(q_b[i]), .CLK(clk));
end
DFF m_ff(.D(m), .Q(q_m), .CLK(clk));
/* Combinational logic */
(* pack = "DFF-DSP" *)
wire [DATA_WIDTH-1:0] c_out;
DSP_COMBINATIONAL comb (.a(q_a), .b(q_b), .m(q_m), .out(c_out));
/* Output register */
wire [DATA_WIDTH-1:0] q_out;
genvar j;
for (j=0; j<DATA_WIDTH; j=j+1) begin: output_dffs_gen
DFF q_out_ff(.D(c_out[j]), .Q(out[j]), .CLK(clk));
end
endmodule
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 | <?xml version="1.0"?>
<models>
<model name="DFF">
<input_ports>
<port is_clock="1" name="CLK"/>
<port clock="CLK" name="D"/>
</input_ports>
<output_ports>
<port clock="CLK" name="Q"/>
</output_ports>
</model>
<model name="DSP_COMBINATIONAL">
<input_ports>
<port combinational_sink_ports="out" name="a"/>
<port combinational_sink_ports="out" name="b"/>
<port combinational_sink_ports="out" name="m"/>
</input_ports>
<output_ports>
<port name="out"/>
</output_ports>
</model>
</models>
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 | <?xml version="1.0"?>
<pb_type xmlns:xi="http://www.w3.org/2001/XInclude" name="DSP_INOUT_REGISTERED" num_pb="1">
<clock name="clk" num_pins="1"/>
<input name="a" num_pins="2"/>
<input name="b" num_pins="2"/>
<input name="m" num_pins="1"/>
<output name="out" num_pins="4"/>
<pb_type blif_model=".subckt DSP_COMBINATIONAL" name="comb" num_pb="1">
<input name="a" num_pins="2"/>
<input name="b" num_pins="2"/>
<input name="m" num_pins="1"/>
<output name="out" num_pins="4"/>
<delay_constant in_port="DSP_COMBINATIONAL.a" max="30e-12" out_port="DSP_COMBINATIONAL.out"/>
<delay_constant in_port="DSP_COMBINATIONAL.b" max="30e-12" out_port="DSP_COMBINATIONAL.out"/>
<delay_constant in_port="DSP_COMBINATIONAL.m" max="10e-12" out_port="DSP_COMBINATIONAL.out"/>
</pb_type>
<pb_type blif_model=".subckt DFF" name="input_dffs_gen_q_a_ff_0" num_pb="1">
<clock name="CLK" num_pins="1"/>
<input name="D" num_pins="1"/>
<output name="Q" num_pins="1"/>
<T_setup clock="CLK" port="DFF.D" value="10e-12"/>
<T_hold clock="CLK" port="DFF.D" value="10e-12"/>
<T_clock_to_Q clock="CLK" max="10e-12" port="DFF.Q"/>
</pb_type>
<pb_type blif_model=".subckt DFF" name="input_dffs_gen_q_a_ff_1" num_pb="1">
<clock name="CLK" num_pins="1"/>
<input name="D" num_pins="1"/>
<output name="Q" num_pins="1"/>
<T_setup clock="CLK" port="DFF.D" value="10e-12"/>
<T_hold clock="CLK" port="DFF.D" value="10e-12"/>
<T_clock_to_Q clock="CLK" max="10e-12" port="DFF.Q"/>
</pb_type>
<pb_type blif_model=".subckt DFF" name="input_dffs_gen_q_b_ff_0" num_pb="1">
<clock name="CLK" num_pins="1"/>
<input name="D" num_pins="1"/>
<output name="Q" num_pins="1"/>
<T_setup clock="CLK" port="DFF.D" value="10e-12"/>
<T_hold clock="CLK" port="DFF.D" value="10e-12"/>
<T_clock_to_Q clock="CLK" max="10e-12" port="DFF.Q"/>
</pb_type>
<pb_type blif_model=".subckt DFF" name="input_dffs_gen_q_b_ff_1" num_pb="1">
<clock name="CLK" num_pins="1"/>
<input name="D" num_pins="1"/>
<output name="Q" num_pins="1"/>
<T_setup clock="CLK" port="DFF.D" value="10e-12"/>
<T_hold clock="CLK" port="DFF.D" value="10e-12"/>
<T_clock_to_Q clock="CLK" max="10e-12" port="DFF.Q"/>
</pb_type>
<pb_type blif_model=".subckt DFF" name="m_ff" num_pb="1">
<clock name="CLK" num_pins="1"/>
<input name="D" num_pins="1"/>
<output name="Q" num_pins="1"/>
<T_setup clock="CLK" port="DFF.D" value="10e-12"/>
<T_hold clock="CLK" port="DFF.D" value="10e-12"/>
<T_clock_to_Q clock="CLK" max="10e-12" port="DFF.Q"/>
</pb_type>
<pb_type blif_model=".subckt DFF" name="output_dffs_gen_q_out_ff_0" num_pb="1">
<clock name="CLK" num_pins="1"/>
<input name="D" num_pins="1"/>
<output name="Q" num_pins="1"/>
<T_setup clock="CLK" port="DFF.D" value="10e-12"/>
<T_hold clock="CLK" port="DFF.D" value="10e-12"/>
<T_clock_to_Q clock="CLK" max="10e-12" port="DFF.Q"/>
</pb_type>
<pb_type blif_model=".subckt DFF" name="output_dffs_gen_q_out_ff_1" num_pb="1">
<clock name="CLK" num_pins="1"/>
<input name="D" num_pins="1"/>
<output name="Q" num_pins="1"/>
<T_setup clock="CLK" port="DFF.D" value="10e-12"/>
<T_hold clock="CLK" port="DFF.D" value="10e-12"/>
<T_clock_to_Q clock="CLK" max="10e-12" port="DFF.Q"/>
</pb_type>
<pb_type blif_model=".subckt DFF" name="output_dffs_gen_q_out_ff_2" num_pb="1">
<clock name="CLK" num_pins="1"/>
<input name="D" num_pins="1"/>
<output name="Q" num_pins="1"/>
<T_setup clock="CLK" port="DFF.D" value="10e-12"/>
<T_hold clock="CLK" port="DFF.D" value="10e-12"/>
<T_clock_to_Q clock="CLK" max="10e-12" port="DFF.Q"/>
</pb_type>
<pb_type blif_model=".subckt DFF" name="output_dffs_gen_q_out_ff_3" num_pb="1">
<clock name="CLK" num_pins="1"/>
<input name="D" num_pins="1"/>
<output name="Q" num_pins="1"/>
<T_setup clock="CLK" port="DFF.D" value="10e-12"/>
<T_hold clock="CLK" port="DFF.D" value="10e-12"/>
<T_clock_to_Q clock="CLK" max="10e-12" port="DFF.Q"/>
</pb_type>
<interconnect>
<direct input="output_dffs_gen_q_out_ff_0.Q" name="DSP_INOUT_REGISTERED-out[0]" output="DSP_INOUT_REGISTERED.out[0]"/>
<direct input="output_dffs_gen_q_out_ff_1.Q" name="DSP_INOUT_REGISTERED-out[1]" output="DSP_INOUT_REGISTERED.out[1]"/>
<direct input="output_dffs_gen_q_out_ff_2.Q" name="DSP_INOUT_REGISTERED-out[2]" output="DSP_INOUT_REGISTERED.out[2]"/>
<direct input="output_dffs_gen_q_out_ff_3.Q" name="DSP_INOUT_REGISTERED-out[3]" output="DSP_INOUT_REGISTERED.out[3]"/>
<direct input="input_dffs_gen_q_a_ff_0.Q" name="comb-a[0]" output="comb.a[0]">
<pack_pattern in_port="input_dffs_gen_q_a_ff_0.Q" name="pack-DFF-DSP" out_port="comb.a[0]"/>
</direct>
<direct input="input_dffs_gen_q_a_ff_1.Q" name="comb-a[1]" output="comb.a[1]">
<pack_pattern in_port="input_dffs_gen_q_a_ff_1.Q" name="pack-DFF-DSP" out_port="comb.a[1]"/>
</direct>
<direct input="input_dffs_gen_q_b_ff_0.Q" name="comb-b[0]" output="comb.b[0]">
<pack_pattern in_port="input_dffs_gen_q_b_ff_0.Q" name="pack-DFF-DSP" out_port="comb.b[0]"/>
</direct>
<direct input="input_dffs_gen_q_b_ff_1.Q" name="comb-b[1]" output="comb.b[1]">
<pack_pattern in_port="input_dffs_gen_q_b_ff_1.Q" name="pack-DFF-DSP" out_port="comb.b[1]"/>
</direct>
<direct input="m_ff.Q" name="comb-m" output="comb.m">
<pack_pattern in_port="m_ff.Q" name="pack-DFF-DSP" out_port="comb.m"/>
</direct>
<direct input="DSP_INOUT_REGISTERED.clk" name="input_dffs_gen_q_a_ff_0-CLK" output="input_dffs_gen_q_a_ff_0.CLK"/>
<direct input="DSP_INOUT_REGISTERED.a[0]" name="input_dffs_gen_q_a_ff_0-D" output="input_dffs_gen_q_a_ff_0.D"/>
<direct input="DSP_INOUT_REGISTERED.clk" name="input_dffs_gen_q_a_ff_1-CLK" output="input_dffs_gen_q_a_ff_1.CLK"/>
<direct input="DSP_INOUT_REGISTERED.a[1]" name="input_dffs_gen_q_a_ff_1-D" output="input_dffs_gen_q_a_ff_1.D"/>
<direct input="DSP_INOUT_REGISTERED.clk" name="input_dffs_gen_q_b_ff_0-CLK" output="input_dffs_gen_q_b_ff_0.CLK"/>
<direct input="DSP_INOUT_REGISTERED.b[0]" name="input_dffs_gen_q_b_ff_0-D" output="input_dffs_gen_q_b_ff_0.D"/>
<direct input="DSP_INOUT_REGISTERED.clk" name="input_dffs_gen_q_b_ff_1-CLK" output="input_dffs_gen_q_b_ff_1.CLK"/>
<direct input="DSP_INOUT_REGISTERED.b[1]" name="input_dffs_gen_q_b_ff_1-D" output="input_dffs_gen_q_b_ff_1.D"/>
<direct input="DSP_INOUT_REGISTERED.clk" name="m_ff-CLK" output="m_ff.CLK"/>
<direct input="DSP_INOUT_REGISTERED.m" name="m_ff-D" output="m_ff.D"/>
<direct input="DSP_INOUT_REGISTERED.clk" name="output_dffs_gen_q_out_ff_0-CLK" output="output_dffs_gen_q_out_ff_0.CLK"/>
<direct input="comb.out[0]" name="output_dffs_gen_q_out_ff_0-D" output="output_dffs_gen_q_out_ff_0.D">
<pack_pattern in_port="comb.out[0]" name="pack-DFF-DSP" out_port="output_dffs_gen_q_out_ff_0.D"/>
</direct>
<direct input="DSP_INOUT_REGISTERED.clk" name="output_dffs_gen_q_out_ff_1-CLK" output="output_dffs_gen_q_out_ff_1.CLK"/>
<direct input="comb.out[1]" name="output_dffs_gen_q_out_ff_1-D" output="output_dffs_gen_q_out_ff_1.D">
<pack_pattern in_port="comb.out[1]" name="pack-DFF-DSP" out_port="output_dffs_gen_q_out_ff_1.D"/>
</direct>
<direct input="DSP_INOUT_REGISTERED.clk" name="output_dffs_gen_q_out_ff_2-CLK" output="output_dffs_gen_q_out_ff_2.CLK"/>
<direct input="comb.out[2]" name="output_dffs_gen_q_out_ff_2-D" output="output_dffs_gen_q_out_ff_2.D">
<pack_pattern in_port="comb.out[2]" name="pack-DFF-DSP" out_port="output_dffs_gen_q_out_ff_2.D"/>
</direct>
<direct input="DSP_INOUT_REGISTERED.clk" name="output_dffs_gen_q_out_ff_3-CLK" output="output_dffs_gen_q_out_ff_3.CLK"/>
<direct input="comb.out[3]" name="output_dffs_gen_q_out_ff_3-D" output="output_dffs_gen_q_out_ff_3.D">
<pack_pattern in_port="comb.out[3]" name="pack-DFF-DSP" out_port="output_dffs_gen_q_out_ff_3.D"/>
</direct>
</interconnect>
</pb_type>
|
Detection of combinational connections¶
Output has combinational connection with input
pack_pattern
defined on wire connections withpack
attribute
Blackbox detection¶
Model of the leaf
pb_type
is generatedLeaf
pb_type
XML is generatedAll dependency models and
pb_type
s are included in the output files
DSP-style block with inputs and outputs registered using separate clocks¶
A combinational DSP block with registered inputs and outputs. Separate clock is used for inputs and outputs. Modeled as a complex block.
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 | `include "./dff/dff.sim.v"
`include "./dsp_combinational/dsp_combinational.sim.v"
/* DSP Block with register on both the inputs and the output, which use different clocks */
module DSP_INOUT_REGISTERED_DUALCLK (iclk, oclk, a, b, m, out);
localparam DATA_WIDTH = 4;
input wire iclk;
input wire oclk;
input wire [DATA_WIDTH/2-1:0] a;
input wire [DATA_WIDTH/2-1:0] b;
input wire m;
output wire [DATA_WIDTH-1:0] out;
/* Input registers on iclk */
(* pack="DFF-DSP" *)
wire [DATA_WIDTH/2-1:0] q_a;
(* pack="DFF-DSP" *)
wire [DATA_WIDTH/2-1:0] q_b;
(* pack="DFF-DSP" *)
wire q_m;
genvar i;
for (i=0; i<DATA_WIDTH/2; i=i+1) begin: input_dffs_gen
DFF q_a_ff(.D(a[i]), .Q(q_a[i]), .CLK(iclk));
DFF q_b_ff(.D(b[i]), .Q(q_b[i]), .CLK(iclk));
end
DFF m_ff(.D(m), .Q(q_m), .CLK(iclk));
/* Combinational logic */
(* pack="DFF-DSP" *)
wire [DATA_WIDTH-1:0] c_out;
DSP_COMBINATIONAL comb (.a(q_a), .b(q_b), .m(q_m), .out(c_out));
/* Output register on oclk */
wire [DATA_WIDTH-1:0] q_out;
genvar j;
for (j=0; j<DATA_WIDTH; j=j+1) begin: output_dffs_gen
DFF q_out_ff(.D(c_out[j]), .Q(out[j]), .CLK(oclk));
end
endmodule
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 | <?xml version="1.0"?>
<models>
<model name="DFF">
<input_ports>
<port is_clock="1" name="CLK"/>
<port clock="CLK" name="D"/>
</input_ports>
<output_ports>
<port clock="CLK" name="Q"/>
</output_ports>
</model>
<model name="DSP_COMBINATIONAL">
<input_ports>
<port combinational_sink_ports="out" name="a"/>
<port combinational_sink_ports="out" name="b"/>
<port combinational_sink_ports="out" name="m"/>
</input_ports>
<output_ports>
<port name="out"/>
</output_ports>
</model>
</models>
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 | <?xml version="1.0"?>
<pb_type xmlns:xi="http://www.w3.org/2001/XInclude" name="DSP_INOUT_REGISTERED_DUALCLK" num_pb="1">
<clock name="iclk" num_pins="1"/>
<clock name="oclk" num_pins="1"/>
<input name="a" num_pins="2"/>
<input name="b" num_pins="2"/>
<input name="m" num_pins="1"/>
<output name="out" num_pins="4"/>
<pb_type blif_model=".subckt DSP_COMBINATIONAL" name="comb" num_pb="1">
<input name="a" num_pins="2"/>
<input name="b" num_pins="2"/>
<input name="m" num_pins="1"/>
<output name="out" num_pins="4"/>
<delay_constant in_port="DSP_COMBINATIONAL.a" max="30e-12" out_port="DSP_COMBINATIONAL.out"/>
<delay_constant in_port="DSP_COMBINATIONAL.b" max="30e-12" out_port="DSP_COMBINATIONAL.out"/>
<delay_constant in_port="DSP_COMBINATIONAL.m" max="10e-12" out_port="DSP_COMBINATIONAL.out"/>
</pb_type>
<pb_type blif_model=".subckt DFF" name="input_dffs_gen_q_a_ff_0" num_pb="1">
<clock name="CLK" num_pins="1"/>
<input name="D" num_pins="1"/>
<output name="Q" num_pins="1"/>
<T_setup clock="CLK" port="DFF.D" value="10e-12"/>
<T_hold clock="CLK" port="DFF.D" value="10e-12"/>
<T_clock_to_Q clock="CLK" max="10e-12" port="DFF.Q"/>
</pb_type>
<pb_type blif_model=".subckt DFF" name="input_dffs_gen_q_a_ff_1" num_pb="1">
<clock name="CLK" num_pins="1"/>
<input name="D" num_pins="1"/>
<output name="Q" num_pins="1"/>
<T_setup clock="CLK" port="DFF.D" value="10e-12"/>
<T_hold clock="CLK" port="DFF.D" value="10e-12"/>
<T_clock_to_Q clock="CLK" max="10e-12" port="DFF.Q"/>
</pb_type>
<pb_type blif_model=".subckt DFF" name="input_dffs_gen_q_b_ff_0" num_pb="1">
<clock name="CLK" num_pins="1"/>
<input name="D" num_pins="1"/>
<output name="Q" num_pins="1"/>
<T_setup clock="CLK" port="DFF.D" value="10e-12"/>
<T_hold clock="CLK" port="DFF.D" value="10e-12"/>
<T_clock_to_Q clock="CLK" max="10e-12" port="DFF.Q"/>
</pb_type>
<pb_type blif_model=".subckt DFF" name="input_dffs_gen_q_b_ff_1" num_pb="1">
<clock name="CLK" num_pins="1"/>
<input name="D" num_pins="1"/>
<output name="Q" num_pins="1"/>
<T_setup clock="CLK" port="DFF.D" value="10e-12"/>
<T_hold clock="CLK" port="DFF.D" value="10e-12"/>
<T_clock_to_Q clock="CLK" max="10e-12" port="DFF.Q"/>
</pb_type>
<pb_type blif_model=".subckt DFF" name="m_ff" num_pb="1">
<clock name="CLK" num_pins="1"/>
<input name="D" num_pins="1"/>
<output name="Q" num_pins="1"/>
<T_setup clock="CLK" port="DFF.D" value="10e-12"/>
<T_hold clock="CLK" port="DFF.D" value="10e-12"/>
<T_clock_to_Q clock="CLK" max="10e-12" port="DFF.Q"/>
</pb_type>
<pb_type blif_model=".subckt DFF" name="output_dffs_gen_q_out_ff_0" num_pb="1">
<clock name="CLK" num_pins="1"/>
<input name="D" num_pins="1"/>
<output name="Q" num_pins="1"/>
<T_setup clock="CLK" port="DFF.D" value="10e-12"/>
<T_hold clock="CLK" port="DFF.D" value="10e-12"/>
<T_clock_to_Q clock="CLK" max="10e-12" port="DFF.Q"/>
</pb_type>
<pb_type blif_model=".subckt DFF" name="output_dffs_gen_q_out_ff_1" num_pb="1">
<clock name="CLK" num_pins="1"/>
<input name="D" num_pins="1"/>
<output name="Q" num_pins="1"/>
<T_setup clock="CLK" port="DFF.D" value="10e-12"/>
<T_hold clock="CLK" port="DFF.D" value="10e-12"/>
<T_clock_to_Q clock="CLK" max="10e-12" port="DFF.Q"/>
</pb_type>
<pb_type blif_model=".subckt DFF" name="output_dffs_gen_q_out_ff_2" num_pb="1">
<clock name="CLK" num_pins="1"/>
<input name="D" num_pins="1"/>
<output name="Q" num_pins="1"/>
<T_setup clock="CLK" port="DFF.D" value="10e-12"/>
<T_hold clock="CLK" port="DFF.D" value="10e-12"/>
<T_clock_to_Q clock="CLK" max="10e-12" port="DFF.Q"/>
</pb_type>
<pb_type blif_model=".subckt DFF" name="output_dffs_gen_q_out_ff_3" num_pb="1">
<clock name="CLK" num_pins="1"/>
<input name="D" num_pins="1"/>
<output name="Q" num_pins="1"/>
<T_setup clock="CLK" port="DFF.D" value="10e-12"/>
<T_hold clock="CLK" port="DFF.D" value="10e-12"/>
<T_clock_to_Q clock="CLK" max="10e-12" port="DFF.Q"/>
</pb_type>
<interconnect>
<direct input="output_dffs_gen_q_out_ff_0.Q" name="DSP_INOUT_REGISTERED_DUALCLK-out[0]" output="DSP_INOUT_REGISTERED_DUALCLK.out[0]"/>
<direct input="output_dffs_gen_q_out_ff_1.Q" name="DSP_INOUT_REGISTERED_DUALCLK-out[1]" output="DSP_INOUT_REGISTERED_DUALCLK.out[1]"/>
<direct input="output_dffs_gen_q_out_ff_2.Q" name="DSP_INOUT_REGISTERED_DUALCLK-out[2]" output="DSP_INOUT_REGISTERED_DUALCLK.out[2]"/>
<direct input="output_dffs_gen_q_out_ff_3.Q" name="DSP_INOUT_REGISTERED_DUALCLK-out[3]" output="DSP_INOUT_REGISTERED_DUALCLK.out[3]"/>
<direct input="input_dffs_gen_q_a_ff_0.Q" name="comb-a[0]" output="comb.a[0]">
<pack_pattern in_port="input_dffs_gen_q_a_ff_0.Q" name="pack-DFF-DSP" out_port="comb.a[0]"/>
</direct>
<direct input="input_dffs_gen_q_a_ff_1.Q" name="comb-a[1]" output="comb.a[1]">
<pack_pattern in_port="input_dffs_gen_q_a_ff_1.Q" name="pack-DFF-DSP" out_port="comb.a[1]"/>
</direct>
<direct input="input_dffs_gen_q_b_ff_0.Q" name="comb-b[0]" output="comb.b[0]">
<pack_pattern in_port="input_dffs_gen_q_b_ff_0.Q" name="pack-DFF-DSP" out_port="comb.b[0]"/>
</direct>
<direct input="input_dffs_gen_q_b_ff_1.Q" name="comb-b[1]" output="comb.b[1]">
<pack_pattern in_port="input_dffs_gen_q_b_ff_1.Q" name="pack-DFF-DSP" out_port="comb.b[1]"/>
</direct>
<direct input="m_ff.Q" name="comb-m" output="comb.m">
<pack_pattern in_port="m_ff.Q" name="pack-DFF-DSP" out_port="comb.m"/>
</direct>
<direct input="DSP_INOUT_REGISTERED_DUALCLK.iclk" name="input_dffs_gen_q_a_ff_0-CLK" output="input_dffs_gen_q_a_ff_0.CLK"/>
<direct input="DSP_INOUT_REGISTERED_DUALCLK.a[0]" name="input_dffs_gen_q_a_ff_0-D" output="input_dffs_gen_q_a_ff_0.D"/>
<direct input="DSP_INOUT_REGISTERED_DUALCLK.iclk" name="input_dffs_gen_q_a_ff_1-CLK" output="input_dffs_gen_q_a_ff_1.CLK"/>
<direct input="DSP_INOUT_REGISTERED_DUALCLK.a[1]" name="input_dffs_gen_q_a_ff_1-D" output="input_dffs_gen_q_a_ff_1.D"/>
<direct input="DSP_INOUT_REGISTERED_DUALCLK.iclk" name="input_dffs_gen_q_b_ff_0-CLK" output="input_dffs_gen_q_b_ff_0.CLK"/>
<direct input="DSP_INOUT_REGISTERED_DUALCLK.b[0]" name="input_dffs_gen_q_b_ff_0-D" output="input_dffs_gen_q_b_ff_0.D"/>
<direct input="DSP_INOUT_REGISTERED_DUALCLK.iclk" name="input_dffs_gen_q_b_ff_1-CLK" output="input_dffs_gen_q_b_ff_1.CLK"/>
<direct input="DSP_INOUT_REGISTERED_DUALCLK.b[1]" name="input_dffs_gen_q_b_ff_1-D" output="input_dffs_gen_q_b_ff_1.D"/>
<direct input="DSP_INOUT_REGISTERED_DUALCLK.iclk" name="m_ff-CLK" output="m_ff.CLK"/>
<direct input="DSP_INOUT_REGISTERED_DUALCLK.m" name="m_ff-D" output="m_ff.D"/>
<direct input="DSP_INOUT_REGISTERED_DUALCLK.oclk" name="output_dffs_gen_q_out_ff_0-CLK" output="output_dffs_gen_q_out_ff_0.CLK"/>
<direct input="comb.out[0]" name="output_dffs_gen_q_out_ff_0-D" output="output_dffs_gen_q_out_ff_0.D">
<pack_pattern in_port="comb.out[0]" name="pack-DFF-DSP" out_port="output_dffs_gen_q_out_ff_0.D"/>
</direct>
<direct input="DSP_INOUT_REGISTERED_DUALCLK.oclk" name="output_dffs_gen_q_out_ff_1-CLK" output="output_dffs_gen_q_out_ff_1.CLK"/>
<direct input="comb.out[1]" name="output_dffs_gen_q_out_ff_1-D" output="output_dffs_gen_q_out_ff_1.D">
<pack_pattern in_port="comb.out[1]" name="pack-DFF-DSP" out_port="output_dffs_gen_q_out_ff_1.D"/>
</direct>
<direct input="DSP_INOUT_REGISTERED_DUALCLK.oclk" name="output_dffs_gen_q_out_ff_2-CLK" output="output_dffs_gen_q_out_ff_2.CLK"/>
<direct input="comb.out[2]" name="output_dffs_gen_q_out_ff_2-D" output="output_dffs_gen_q_out_ff_2.D">
<pack_pattern in_port="comb.out[2]" name="pack-DFF-DSP" out_port="output_dffs_gen_q_out_ff_2.D"/>
</direct>
<direct input="DSP_INOUT_REGISTERED_DUALCLK.oclk" name="output_dffs_gen_q_out_ff_3-CLK" output="output_dffs_gen_q_out_ff_3.CLK"/>
<direct input="comb.out[3]" name="output_dffs_gen_q_out_ff_3-D" output="output_dffs_gen_q_out_ff_3.D">
<pack_pattern in_port="comb.out[3]" name="pack-DFF-DSP" out_port="output_dffs_gen_q_out_ff_3.D"/>
</direct>
</interconnect>
</pb_type>
|
Detection of combinational connections¶
Output has combinational connection with input
pack_pattern
defined on wire connections withpack
attribute
Blackbox detection¶
Model of the leaf
pb_type
is generatedLeaf
pb_type
XML is generatedAll dependency models and
pb_type
s are included in the output files
DSP-style block with only one input registered¶
A combinational DSP block with all but one registered inputs. Modeled as a complex block.
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 | `include "./dff/dff.sim.v"
`include "./dsp_combinational/dsp_combinational.sim.v"
/* DSP Block with register on only some inputs */
module DSP_PARTIAL_REGISTERED (clk, a, b, m, out);
localparam DATA_WIDTH = 4;
input wire clk;
input wire [DATA_WIDTH/2-1:0] a;
input wire [DATA_WIDTH/2-1:0] b;
input wire m;
output wire [DATA_WIDTH-1:0] out;
/* Input registers */
(* pack="DFF-DSP" *)
wire [DATA_WIDTH/2-1:0] q_a;
(* pack="DFF-DSP" *)
wire [DATA_WIDTH/2-1:0] q_b;
genvar i;
for (i=0; i<DATA_WIDTH/2; i=i+1) begin: dffs_gen
DFF q_a_ff(.D(a[i]), .Q(q_a[i]), .CLK(clk));
DFF q_b_ff(.D(b[i]), .Q(q_b[i]), .CLK(clk));
end
/* Combinational Logic */
DSP_COMBINATIONAL comb (.a(q_a), .b(q_b), .m(m), .out(out));
endmodule
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 | <?xml version="1.0"?>
<models>
<model name="DFF">
<input_ports>
<port is_clock="1" name="CLK"/>
<port clock="CLK" name="D"/>
</input_ports>
<output_ports>
<port clock="CLK" name="Q"/>
</output_ports>
</model>
<model name="DSP_COMBINATIONAL">
<input_ports>
<port combinational_sink_ports="out" name="a"/>
<port combinational_sink_ports="out" name="b"/>
<port combinational_sink_ports="out" name="m"/>
</input_ports>
<output_ports>
<port name="out"/>
</output_ports>
</model>
</models>
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 | <?xml version="1.0"?>
<pb_type xmlns:xi="http://www.w3.org/2001/XInclude" name="DSP_PARTIAL_REGISTERED" num_pb="1">
<clock name="clk" num_pins="1"/>
<input name="a" num_pins="2"/>
<input name="b" num_pins="2"/>
<input name="m" num_pins="1"/>
<output name="out" num_pins="4"/>
<pb_type blif_model=".subckt DSP_COMBINATIONAL" name="comb" num_pb="1">
<input name="a" num_pins="2"/>
<input name="b" num_pins="2"/>
<input name="m" num_pins="1"/>
<output name="out" num_pins="4"/>
<delay_constant in_port="DSP_COMBINATIONAL.a" max="30e-12" out_port="DSP_COMBINATIONAL.out"/>
<delay_constant in_port="DSP_COMBINATIONAL.b" max="30e-12" out_port="DSP_COMBINATIONAL.out"/>
<delay_constant in_port="DSP_COMBINATIONAL.m" max="10e-12" out_port="DSP_COMBINATIONAL.out"/>
</pb_type>
<pb_type blif_model=".subckt DFF" name="dffs_gen_q_a_ff_0" num_pb="1">
<clock name="CLK" num_pins="1"/>
<input name="D" num_pins="1"/>
<output name="Q" num_pins="1"/>
<T_setup clock="CLK" port="DFF.D" value="10e-12"/>
<T_hold clock="CLK" port="DFF.D" value="10e-12"/>
<T_clock_to_Q clock="CLK" max="10e-12" port="DFF.Q"/>
</pb_type>
<pb_type blif_model=".subckt DFF" name="dffs_gen_q_a_ff_1" num_pb="1">
<clock name="CLK" num_pins="1"/>
<input name="D" num_pins="1"/>
<output name="Q" num_pins="1"/>
<T_setup clock="CLK" port="DFF.D" value="10e-12"/>
<T_hold clock="CLK" port="DFF.D" value="10e-12"/>
<T_clock_to_Q clock="CLK" max="10e-12" port="DFF.Q"/>
</pb_type>
<pb_type blif_model=".subckt DFF" name="dffs_gen_q_b_ff_0" num_pb="1">
<clock name="CLK" num_pins="1"/>
<input name="D" num_pins="1"/>
<output name="Q" num_pins="1"/>
<T_setup clock="CLK" port="DFF.D" value="10e-12"/>
<T_hold clock="CLK" port="DFF.D" value="10e-12"/>
<T_clock_to_Q clock="CLK" max="10e-12" port="DFF.Q"/>
</pb_type>
<pb_type blif_model=".subckt DFF" name="dffs_gen_q_b_ff_1" num_pb="1">
<clock name="CLK" num_pins="1"/>
<input name="D" num_pins="1"/>
<output name="Q" num_pins="1"/>
<T_setup clock="CLK" port="DFF.D" value="10e-12"/>
<T_hold clock="CLK" port="DFF.D" value="10e-12"/>
<T_clock_to_Q clock="CLK" max="10e-12" port="DFF.Q"/>
</pb_type>
<interconnect>
<direct input="comb.out[0]" name="DSP_PARTIAL_REGISTERED-out[0]" output="DSP_PARTIAL_REGISTERED.out[0]"/>
<direct input="comb.out[1]" name="DSP_PARTIAL_REGISTERED-out[1]" output="DSP_PARTIAL_REGISTERED.out[1]"/>
<direct input="comb.out[2]" name="DSP_PARTIAL_REGISTERED-out[2]" output="DSP_PARTIAL_REGISTERED.out[2]"/>
<direct input="comb.out[3]" name="DSP_PARTIAL_REGISTERED-out[3]" output="DSP_PARTIAL_REGISTERED.out[3]"/>
<direct input="dffs_gen_q_a_ff_0.Q" name="comb-a[0]" output="comb.a[0]">
<pack_pattern in_port="dffs_gen_q_a_ff_0.Q" name="pack-DFF-DSP" out_port="comb.a[0]"/>
</direct>
<direct input="dffs_gen_q_a_ff_1.Q" name="comb-a[1]" output="comb.a[1]">
<pack_pattern in_port="dffs_gen_q_a_ff_1.Q" name="pack-DFF-DSP" out_port="comb.a[1]"/>
</direct>
<direct input="dffs_gen_q_b_ff_0.Q" name="comb-b[0]" output="comb.b[0]">
<pack_pattern in_port="dffs_gen_q_b_ff_0.Q" name="pack-DFF-DSP" out_port="comb.b[0]"/>
</direct>
<direct input="dffs_gen_q_b_ff_1.Q" name="comb-b[1]" output="comb.b[1]">
<pack_pattern in_port="dffs_gen_q_b_ff_1.Q" name="pack-DFF-DSP" out_port="comb.b[1]"/>
</direct>
<direct input="DSP_PARTIAL_REGISTERED.m" name="comb-m" output="comb.m"/>
<direct input="DSP_PARTIAL_REGISTERED.clk" name="dffs_gen_q_a_ff_0-CLK" output="dffs_gen_q_a_ff_0.CLK"/>
<direct input="DSP_PARTIAL_REGISTERED.a[0]" name="dffs_gen_q_a_ff_0-D" output="dffs_gen_q_a_ff_0.D"/>
<direct input="DSP_PARTIAL_REGISTERED.clk" name="dffs_gen_q_a_ff_1-CLK" output="dffs_gen_q_a_ff_1.CLK"/>
<direct input="DSP_PARTIAL_REGISTERED.a[1]" name="dffs_gen_q_a_ff_1-D" output="dffs_gen_q_a_ff_1.D"/>
<direct input="DSP_PARTIAL_REGISTERED.clk" name="dffs_gen_q_b_ff_0-CLK" output="dffs_gen_q_b_ff_0.CLK"/>
<direct input="DSP_PARTIAL_REGISTERED.b[0]" name="dffs_gen_q_b_ff_0-D" output="dffs_gen_q_b_ff_0.D"/>
<direct input="DSP_PARTIAL_REGISTERED.clk" name="dffs_gen_q_b_ff_1-CLK" output="dffs_gen_q_b_ff_1.CLK"/>
<direct input="DSP_PARTIAL_REGISTERED.b[1]" name="dffs_gen_q_b_ff_1-D" output="dffs_gen_q_b_ff_1.D"/>
</interconnect>
</pb_type>
|
Detection of combinational connections¶
Output has combinational connection with input
pack_pattern
defined on wire connections withpack
attribute
Blackbox detection¶
Model of the leaf
pb_type
is generatedLeaf
pb_type
XML is generatedAll dependency models and
pb_type
s are included in the output files
DSP-style block with different modes¶
The possible modes are
Combinational only (i.e.
dsp_combinational
)Register on one input (i.e.
dsp_partial_registered
)Register on all inputs (i.e.
dsp_in_registered
)Register on outputs (i.e.
dsp_out_registered
).Register on both inputs and outputs (with same clock) (i.e.
dsp_inout_registered
).
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 | `include "./dsp_combinational/dsp_combinational.sim.v"
`include "./dsp_inout_registered/dsp_inout_registered.sim.v"
`include "./dsp_in_registered/dsp_in_registered.sim.v"
`include "./dsp_out_registered/dsp_out_registered.sim.v"
`include "./dsp_partial_registered/dsp_partial_registered.sim.v"
/* DSP Block with register on both the inputs and the output */
(* MODES="REGISTERED_NONE; REGISTERED_IN; REGISTERED_OUT; REGISTERED_INOUT; REGISTERED_PARTIAL" *)
module DSP_MODES (clk, a, b, m, out);
localparam DATA_WIDTH = 4;
parameter MODE = "REGISTERED_INOUT";
input wire clk;
input wire [DATA_WIDTH/2-1:0] a;
input wire [DATA_WIDTH/2-1:0] b;
input wire m;
output wire [DATA_WIDTH-1:0] out;
/* Register modes */
generate
if (MODE == "REGISTERED_NONE") begin
DSP_COMBINATIONAL dsp_int_comb (.a(a), .b(b), .m(m), .out(out));
end if (MODE == "REGISTERED_INOUT") begin
DSP_INOUT_REGISTERED dsp_int_regio (.clk(clk), .a(a), .b(b), .m(m), .out(out));
end if (MODE == "REGISTERED_IN") begin
DSP_IN_REGISTERED dsp_int_regi (.clk(clk), .a(a), .b(b), .m(m), .out(out));
end if (MODE == "REGISTERED_OUT") begin
DSP_OUT_REGISTERED dsp_int_rego (.clk(clk), .a(a), .b(b), .m(m), .out(out));
end if (MODE == "REGISTERED_PARTIAL") begin
DSP_PARTIAL_REGISTERED dsp_int_part (.clk(clk), .a(a), .b(b), .m(m), .out(out));
end
endgenerate
endmodule
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 | <?xml version="1.0"?>
<models>
<model name="DSP_COMBINATIONAL">
<input_ports>
<port combinational_sink_ports="out" name="a"/>
<port combinational_sink_ports="out" name="b"/>
<port combinational_sink_ports="out" name="m"/>
</input_ports>
<output_ports>
<port name="out"/>
</output_ports>
</model>
<model name="DFF">
<input_ports>
<port is_clock="1" name="CLK"/>
<port clock="CLK" name="D"/>
</input_ports>
<output_ports>
<port clock="CLK" name="Q"/>
</output_ports>
</model>
</models>
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 | <?xml version="1.0"?>
<pb_type xmlns:xi="http://www.w3.org/2001/XInclude" name="DSP_MODES" num_pb="1">
<clock name="clk" num_pins="1"/>
<input name="a" num_pins="2"/>
<input name="b" num_pins="2"/>
<input name="m" num_pins="1"/>
<output name="out" num_pins="4"/>
<mode name="REGISTERED_NONE">
<pb_type name="REGISTERED_NONE" num_pb="1">
<clock name="clk" num_pins="1"/>
<input name="a" num_pins="2"/>
<input name="b" num_pins="2"/>
<input name="m" num_pins="1"/>
<output name="out" num_pins="4"/>
<pb_type blif_model=".subckt DSP_COMBINATIONAL" name="dsp_int_comb" num_pb="1">
<input name="a" num_pins="2"/>
<input name="b" num_pins="2"/>
<input name="m" num_pins="1"/>
<output name="out" num_pins="4"/>
<delay_constant in_port="DSP_COMBINATIONAL.a" max="30e-12" out_port="DSP_COMBINATIONAL.out"/>
<delay_constant in_port="DSP_COMBINATIONAL.b" max="30e-12" out_port="DSP_COMBINATIONAL.out"/>
<delay_constant in_port="DSP_COMBINATIONAL.m" max="10e-12" out_port="DSP_COMBINATIONAL.out"/>
</pb_type>
<interconnect>
<direct input="dsp_int_comb.out[0]" name="REGISTERED_NONE-out[0]" output="REGISTERED_NONE.out[0]"/>
<direct input="dsp_int_comb.out[1]" name="REGISTERED_NONE-out[1]" output="REGISTERED_NONE.out[1]"/>
<direct input="dsp_int_comb.out[2]" name="REGISTERED_NONE-out[2]" output="REGISTERED_NONE.out[2]"/>
<direct input="dsp_int_comb.out[3]" name="REGISTERED_NONE-out[3]" output="REGISTERED_NONE.out[3]"/>
<direct input="REGISTERED_NONE.a[0]" name="dsp_int_comb-a[0]" output="dsp_int_comb.a[0]"/>
<direct input="REGISTERED_NONE.a[1]" name="dsp_int_comb-a[1]" output="dsp_int_comb.a[1]"/>
<direct input="REGISTERED_NONE.b[0]" name="dsp_int_comb-b[0]" output="dsp_int_comb.b[0]"/>
<direct input="REGISTERED_NONE.b[1]" name="dsp_int_comb-b[1]" output="dsp_int_comb.b[1]"/>
<direct input="REGISTERED_NONE.m" name="dsp_int_comb-m" output="dsp_int_comb.m"/>
</interconnect>
</pb_type>
<interconnect>
<direct input="REGISTERED_NONE.out" name="DSP_MODES-out" output="DSP_MODES.out"/>
<direct input="DSP_MODES.a" name="REGISTERED_NONE-a" output="REGISTERED_NONE.a"/>
<direct input="DSP_MODES.b" name="REGISTERED_NONE-b" output="REGISTERED_NONE.b"/>
<direct input="DSP_MODES.clk" name="REGISTERED_NONE-clk" output="REGISTERED_NONE.clk"/>
<direct input="DSP_MODES.m" name="REGISTERED_NONE-m" output="REGISTERED_NONE.m"/>
</interconnect>
</mode>
<mode name="REGISTERED_IN">
<pb_type name="REGISTERED_IN" num_pb="1">
<clock name="clk" num_pins="1"/>
<input name="a" num_pins="2"/>
<input name="b" num_pins="2"/>
<input name="m" num_pins="1"/>
<output name="out" num_pins="4"/>
<pb_type name="dsp_int_regi" num_pb="1">
<clock name="clk" num_pins="1"/>
<input name="a" num_pins="2"/>
<input name="b" num_pins="2"/>
<input name="m" num_pins="1"/>
<output name="out" num_pins="4"/>
<pb_type blif_model=".subckt DSP_COMBINATIONAL" name="comb" num_pb="1">
<input name="a" num_pins="2"/>
<input name="b" num_pins="2"/>
<input name="m" num_pins="1"/>
<output name="out" num_pins="4"/>
<delay_constant in_port="DSP_COMBINATIONAL.a" max="30e-12" out_port="DSP_COMBINATIONAL.out"/>
<delay_constant in_port="DSP_COMBINATIONAL.b" max="30e-12" out_port="DSP_COMBINATIONAL.out"/>
<delay_constant in_port="DSP_COMBINATIONAL.m" max="10e-12" out_port="DSP_COMBINATIONAL.out"/>
</pb_type>
<pb_type blif_model=".subckt DFF" name="m_ff" num_pb="1">
<clock name="CLK" num_pins="1"/>
<input name="D" num_pins="1"/>
<output name="Q" num_pins="1"/>
<T_setup clock="CLK" port="DFF.D" value="10e-12"/>
<T_hold clock="CLK" port="DFF.D" value="10e-12"/>
<T_clock_to_Q clock="CLK" max="10e-12" port="DFF.Q"/>
</pb_type>
<pb_type blif_model=".subckt DFF" name="q_a_ff" num_pb="2">
<clock name="CLK" num_pins="1"/>
<input name="D" num_pins="1"/>
<output name="Q" num_pins="1"/>
<T_setup clock="CLK" port="DFF.D" value="10e-12"/>
<T_hold clock="CLK" port="DFF.D" value="10e-12"/>
<T_clock_to_Q clock="CLK" max="10e-12" port="DFF.Q"/>
</pb_type>
<pb_type blif_model=".subckt DFF" name="q_b_ff" num_pb="2">
<clock name="CLK" num_pins="1"/>
<input name="D" num_pins="1"/>
<output name="Q" num_pins="1"/>
<T_setup clock="CLK" port="DFF.D" value="10e-12"/>
<T_hold clock="CLK" port="DFF.D" value="10e-12"/>
<T_clock_to_Q clock="CLK" max="10e-12" port="DFF.Q"/>
</pb_type>
<interconnect>
<direct input="comb.out[0]" name="DSP_IN_REGISTERED-out[0]" output="DSP_IN_REGISTERED.out[0]"/>
<direct input="comb.out[1]" name="DSP_IN_REGISTERED-out[1]" output="DSP_IN_REGISTERED.out[1]"/>
<direct input="comb.out[2]" name="DSP_IN_REGISTERED-out[2]" output="DSP_IN_REGISTERED.out[2]"/>
<direct input="comb.out[3]" name="DSP_IN_REGISTERED-out[3]" output="DSP_IN_REGISTERED.out[3]"/>
<direct input="q_a_ff[0].Q" name="comb-a[0]" output="comb.a[0]">
<pack_pattern in_port="q_a_ff[0].Q" name="pack-DFF2DSP" out_port="comb.a[0]"/>
</direct>
<direct input="q_a_ff[1].Q" name="comb-a[1]" output="comb.a[1]">
<pack_pattern in_port="q_a_ff[1].Q" name="pack-DFF2DSP" out_port="comb.a[1]"/>
</direct>
<direct input="q_b_ff[0].Q" name="comb-b[0]" output="comb.b[0]">
<pack_pattern in_port="q_b_ff[0].Q" name="pack-DFF2DSP" out_port="comb.b[0]"/>
</direct>
<direct input="q_b_ff[1].Q" name="comb-b[1]" output="comb.b[1]">
<pack_pattern in_port="q_b_ff[1].Q" name="pack-DFF2DSP" out_port="comb.b[1]"/>
</direct>
<direct input="m_ff.Q" name="comb-m" output="comb.m">
<pack_pattern in_port="m_ff.Q" name="pack-DFF2DSP" out_port="comb.m"/>
</direct>
<direct input="DSP_IN_REGISTERED.clk" name="m_ff-CLK" output="m_ff.CLK"/>
<direct input="DSP_IN_REGISTERED.m" name="m_ff-D" output="m_ff.D"/>
<direct input="DSP_IN_REGISTERED.clk" name="q_a_ff[0]-CLK" output="q_a_ff[0].CLK"/>
<direct input="DSP_IN_REGISTERED.a[0]" name="q_a_ff[0]-D" output="q_a_ff[0].D"/>
<direct input="DSP_IN_REGISTERED.clk" name="q_a_ff[1]-CLK" output="q_a_ff[1].CLK"/>
<direct input="DSP_IN_REGISTERED.a[1]" name="q_a_ff[1]-D" output="q_a_ff[1].D"/>
<direct input="DSP_IN_REGISTERED.clk" name="q_b_ff[0]-CLK" output="q_b_ff[0].CLK"/>
<direct input="DSP_IN_REGISTERED.b[0]" name="q_b_ff[0]-D" output="q_b_ff[0].D"/>
<direct input="DSP_IN_REGISTERED.clk" name="q_b_ff[1]-CLK" output="q_b_ff[1].CLK"/>
<direct input="DSP_IN_REGISTERED.b[1]" name="q_b_ff[1]-D" output="q_b_ff[1].D"/>
</interconnect>
</pb_type>
<interconnect>
<direct input="dsp_int_regi.out[0]" name="REGISTERED_IN-out[0]" output="REGISTERED_IN.out[0]"/>
<direct input="dsp_int_regi.out[1]" name="REGISTERED_IN-out[1]" output="REGISTERED_IN.out[1]"/>
<direct input="dsp_int_regi.out[2]" name="REGISTERED_IN-out[2]" output="REGISTERED_IN.out[2]"/>
<direct input="dsp_int_regi.out[3]" name="REGISTERED_IN-out[3]" output="REGISTERED_IN.out[3]"/>
<direct input="REGISTERED_IN.a[0]" name="dsp_int_regi-a[0]" output="dsp_int_regi.a[0]"/>
<direct input="REGISTERED_IN.a[1]" name="dsp_int_regi-a[1]" output="dsp_int_regi.a[1]"/>
<direct input="REGISTERED_IN.b[0]" name="dsp_int_regi-b[0]" output="dsp_int_regi.b[0]"/>
<direct input="REGISTERED_IN.b[1]" name="dsp_int_regi-b[1]" output="dsp_int_regi.b[1]"/>
<direct input="REGISTERED_IN.clk" name="dsp_int_regi-clk" output="dsp_int_regi.clk"/>
<direct input="REGISTERED_IN.m" name="dsp_int_regi-m" output="dsp_int_regi.m"/>
</interconnect>
</pb_type>
<interconnect>
<direct input="REGISTERED_IN.out" name="DSP_MODES-out" output="DSP_MODES.out"/>
<direct input="DSP_MODES.a" name="REGISTERED_IN-a" output="REGISTERED_IN.a"/>
<direct input="DSP_MODES.b" name="REGISTERED_IN-b" output="REGISTERED_IN.b"/>
<direct input="DSP_MODES.clk" name="REGISTERED_IN-clk" output="REGISTERED_IN.clk"/>
<direct input="DSP_MODES.m" name="REGISTERED_IN-m" output="REGISTERED_IN.m"/>
</interconnect>
</mode>
<mode name="REGISTERED_OUT">
<pb_type name="REGISTERED_OUT" num_pb="1">
<clock name="clk" num_pins="1"/>
<input name="a" num_pins="2"/>
<input name="b" num_pins="2"/>
<input name="m" num_pins="1"/>
<output name="out" num_pins="4"/>
<pb_type name="dsp_int_rego" num_pb="1">
<clock name="clk" num_pins="1"/>
<input name="a" num_pins="2"/>
<input name="b" num_pins="2"/>
<input name="m" num_pins="1"/>
<output name="out" num_pins="4"/>
<pb_type blif_model=".subckt DSP_COMBINATIONAL" name="comb" num_pb="1">
<input name="a" num_pins="2"/>
<input name="b" num_pins="2"/>
<input name="m" num_pins="1"/>
<output name="out" num_pins="4"/>
<delay_constant in_port="DSP_COMBINATIONAL.a" max="30e-12" out_port="DSP_COMBINATIONAL.out"/>
<delay_constant in_port="DSP_COMBINATIONAL.b" max="30e-12" out_port="DSP_COMBINATIONAL.out"/>
<delay_constant in_port="DSP_COMBINATIONAL.m" max="10e-12" out_port="DSP_COMBINATIONAL.out"/>
</pb_type>
<pb_type blif_model=".subckt DFF" name="output_dffs_gen_q_out_ff_0" num_pb="1">
<clock name="CLK" num_pins="1"/>
<input name="D" num_pins="1"/>
<output name="Q" num_pins="1"/>
<T_setup clock="CLK" port="DFF.D" value="10e-12"/>
<T_hold clock="CLK" port="DFF.D" value="10e-12"/>
<T_clock_to_Q clock="CLK" max="10e-12" port="DFF.Q"/>
</pb_type>
<pb_type blif_model=".subckt DFF" name="output_dffs_gen_q_out_ff_1" num_pb="1">
<clock name="CLK" num_pins="1"/>
<input name="D" num_pins="1"/>
<output name="Q" num_pins="1"/>
<T_setup clock="CLK" port="DFF.D" value="10e-12"/>
<T_hold clock="CLK" port="DFF.D" value="10e-12"/>
<T_clock_to_Q clock="CLK" max="10e-12" port="DFF.Q"/>
</pb_type>
<pb_type blif_model=".subckt DFF" name="output_dffs_gen_q_out_ff_2" num_pb="1">
<clock name="CLK" num_pins="1"/>
<input name="D" num_pins="1"/>
<output name="Q" num_pins="1"/>
<T_setup clock="CLK" port="DFF.D" value="10e-12"/>
<T_hold clock="CLK" port="DFF.D" value="10e-12"/>
<T_clock_to_Q clock="CLK" max="10e-12" port="DFF.Q"/>
</pb_type>
<pb_type blif_model=".subckt DFF" name="output_dffs_gen_q_out_ff_3" num_pb="1">
<clock name="CLK" num_pins="1"/>
<input name="D" num_pins="1"/>
<output name="Q" num_pins="1"/>
<T_setup clock="CLK" port="DFF.D" value="10e-12"/>
<T_hold clock="CLK" port="DFF.D" value="10e-12"/>
<T_clock_to_Q clock="CLK" max="10e-12" port="DFF.Q"/>
</pb_type>
<interconnect>
<direct input="output_dffs_gen_q_out_ff_0.Q" name="DSP_OUT_REGISTERED-out[0]" output="DSP_OUT_REGISTERED.out[0]"/>
<direct input="output_dffs_gen_q_out_ff_1.Q" name="DSP_OUT_REGISTERED-out[1]" output="DSP_OUT_REGISTERED.out[1]"/>
<direct input="output_dffs_gen_q_out_ff_2.Q" name="DSP_OUT_REGISTERED-out[2]" output="DSP_OUT_REGISTERED.out[2]"/>
<direct input="output_dffs_gen_q_out_ff_3.Q" name="DSP_OUT_REGISTERED-out[3]" output="DSP_OUT_REGISTERED.out[3]"/>
<direct input="DSP_OUT_REGISTERED.a[0]" name="comb-a[0]" output="comb.a[0]"/>
<direct input="DSP_OUT_REGISTERED.a[1]" name="comb-a[1]" output="comb.a[1]"/>
<direct input="DSP_OUT_REGISTERED.b[0]" name="comb-b[0]" output="comb.b[0]"/>
<direct input="DSP_OUT_REGISTERED.b[1]" name="comb-b[1]" output="comb.b[1]"/>
<direct input="DSP_OUT_REGISTERED.m" name="comb-m" output="comb.m"/>
<direct input="DSP_OUT_REGISTERED.clk" name="output_dffs_gen_q_out_ff_0-CLK" output="output_dffs_gen_q_out_ff_0.CLK"/>
<direct input="comb.out[0]" name="output_dffs_gen_q_out_ff_0-D" output="output_dffs_gen_q_out_ff_0.D">
<pack_pattern in_port="comb.out[0]" name="pack-DSP-DFF" out_port="output_dffs_gen_q_out_ff_0.D"/>
</direct>
<direct input="DSP_OUT_REGISTERED.clk" name="output_dffs_gen_q_out_ff_1-CLK" output="output_dffs_gen_q_out_ff_1.CLK"/>
<direct input="comb.out[1]" name="output_dffs_gen_q_out_ff_1-D" output="output_dffs_gen_q_out_ff_1.D">
<pack_pattern in_port="comb.out[1]" name="pack-DSP-DFF" out_port="output_dffs_gen_q_out_ff_1.D"/>
</direct>
<direct input="DSP_OUT_REGISTERED.clk" name="output_dffs_gen_q_out_ff_2-CLK" output="output_dffs_gen_q_out_ff_2.CLK"/>
<direct input="comb.out[2]" name="output_dffs_gen_q_out_ff_2-D" output="output_dffs_gen_q_out_ff_2.D">
<pack_pattern in_port="comb.out[2]" name="pack-DSP-DFF" out_port="output_dffs_gen_q_out_ff_2.D"/>
</direct>
<direct input="DSP_OUT_REGISTERED.clk" name="output_dffs_gen_q_out_ff_3-CLK" output="output_dffs_gen_q_out_ff_3.CLK"/>
<direct input="comb.out[3]" name="output_dffs_gen_q_out_ff_3-D" output="output_dffs_gen_q_out_ff_3.D">
<pack_pattern in_port="comb.out[3]" name="pack-DSP-DFF" out_port="output_dffs_gen_q_out_ff_3.D"/>
</direct>
</interconnect>
</pb_type>
<interconnect>
<direct input="dsp_int_rego.out[0]" name="REGISTERED_OUT-out[0]" output="REGISTERED_OUT.out[0]"/>
<direct input="dsp_int_rego.out[1]" name="REGISTERED_OUT-out[1]" output="REGISTERED_OUT.out[1]"/>
<direct input="dsp_int_rego.out[2]" name="REGISTERED_OUT-out[2]" output="REGISTERED_OUT.out[2]"/>
<direct input="dsp_int_rego.out[3]" name="REGISTERED_OUT-out[3]" output="REGISTERED_OUT.out[3]"/>
<direct input="REGISTERED_OUT.a[0]" name="dsp_int_rego-a[0]" output="dsp_int_rego.a[0]"/>
<direct input="REGISTERED_OUT.a[1]" name="dsp_int_rego-a[1]" output="dsp_int_rego.a[1]"/>
<direct input="REGISTERED_OUT.b[0]" name="dsp_int_rego-b[0]" output="dsp_int_rego.b[0]"/>
<direct input="REGISTERED_OUT.b[1]" name="dsp_int_rego-b[1]" output="dsp_int_rego.b[1]"/>
<direct input="REGISTERED_OUT.clk" name="dsp_int_rego-clk" output="dsp_int_rego.clk"/>
<direct input="REGISTERED_OUT.m" name="dsp_int_rego-m" output="dsp_int_rego.m"/>
</interconnect>
</pb_type>
<interconnect>
<direct input="REGISTERED_OUT.out" name="DSP_MODES-out" output="DSP_MODES.out"/>
<direct input="DSP_MODES.a" name="REGISTERED_OUT-a" output="REGISTERED_OUT.a"/>
<direct input="DSP_MODES.b" name="REGISTERED_OUT-b" output="REGISTERED_OUT.b"/>
<direct input="DSP_MODES.clk" name="REGISTERED_OUT-clk" output="REGISTERED_OUT.clk"/>
<direct input="DSP_MODES.m" name="REGISTERED_OUT-m" output="REGISTERED_OUT.m"/>
</interconnect>
</mode>
<mode name="REGISTERED_INOUT">
<pb_type name="REGISTERED_INOUT" num_pb="1">
<clock name="clk" num_pins="1"/>
<input name="a" num_pins="2"/>
<input name="b" num_pins="2"/>
<input name="m" num_pins="1"/>
<output name="out" num_pins="4"/>
<pb_type name="dsp_int_regio" num_pb="1">
<clock name="clk" num_pins="1"/>
<input name="a" num_pins="2"/>
<input name="b" num_pins="2"/>
<input name="m" num_pins="1"/>
<output name="out" num_pins="4"/>
<pb_type blif_model=".subckt DSP_COMBINATIONAL" name="comb" num_pb="1">
<input name="a" num_pins="2"/>
<input name="b" num_pins="2"/>
<input name="m" num_pins="1"/>
<output name="out" num_pins="4"/>
<delay_constant in_port="DSP_COMBINATIONAL.a" max="30e-12" out_port="DSP_COMBINATIONAL.out"/>
<delay_constant in_port="DSP_COMBINATIONAL.b" max="30e-12" out_port="DSP_COMBINATIONAL.out"/>
<delay_constant in_port="DSP_COMBINATIONAL.m" max="10e-12" out_port="DSP_COMBINATIONAL.out"/>
</pb_type>
<pb_type blif_model=".subckt DFF" name="input_dffs_gen_q_a_ff_0" num_pb="1">
<clock name="CLK" num_pins="1"/>
<input name="D" num_pins="1"/>
<output name="Q" num_pins="1"/>
<T_setup clock="CLK" port="DFF.D" value="10e-12"/>
<T_hold clock="CLK" port="DFF.D" value="10e-12"/>
<T_clock_to_Q clock="CLK" max="10e-12" port="DFF.Q"/>
</pb_type>
<pb_type blif_model=".subckt DFF" name="input_dffs_gen_q_a_ff_1" num_pb="1">
<clock name="CLK" num_pins="1"/>
<input name="D" num_pins="1"/>
<output name="Q" num_pins="1"/>
<T_setup clock="CLK" port="DFF.D" value="10e-12"/>
<T_hold clock="CLK" port="DFF.D" value="10e-12"/>
<T_clock_to_Q clock="CLK" max="10e-12" port="DFF.Q"/>
</pb_type>
<pb_type blif_model=".subckt DFF" name="input_dffs_gen_q_b_ff_0" num_pb="1">
<clock name="CLK" num_pins="1"/>
<input name="D" num_pins="1"/>
<output name="Q" num_pins="1"/>
<T_setup clock="CLK" port="DFF.D" value="10e-12"/>
<T_hold clock="CLK" port="DFF.D" value="10e-12"/>
<T_clock_to_Q clock="CLK" max="10e-12" port="DFF.Q"/>
</pb_type>
<pb_type blif_model=".subckt DFF" name="input_dffs_gen_q_b_ff_1" num_pb="1">
<clock name="CLK" num_pins="1"/>
<input name="D" num_pins="1"/>
<output name="Q" num_pins="1"/>
<T_setup clock="CLK" port="DFF.D" value="10e-12"/>
<T_hold clock="CLK" port="DFF.D" value="10e-12"/>
<T_clock_to_Q clock="CLK" max="10e-12" port="DFF.Q"/>
</pb_type>
<pb_type blif_model=".subckt DFF" name="m_ff" num_pb="1">
<clock name="CLK" num_pins="1"/>
<input name="D" num_pins="1"/>
<output name="Q" num_pins="1"/>
<T_setup clock="CLK" port="DFF.D" value="10e-12"/>
<T_hold clock="CLK" port="DFF.D" value="10e-12"/>
<T_clock_to_Q clock="CLK" max="10e-12" port="DFF.Q"/>
</pb_type>
<pb_type blif_model=".subckt DFF" name="output_dffs_gen_q_out_ff_0" num_pb="1">
<clock name="CLK" num_pins="1"/>
<input name="D" num_pins="1"/>
<output name="Q" num_pins="1"/>
<T_setup clock="CLK" port="DFF.D" value="10e-12"/>
<T_hold clock="CLK" port="DFF.D" value="10e-12"/>
<T_clock_to_Q clock="CLK" max="10e-12" port="DFF.Q"/>
</pb_type>
<pb_type blif_model=".subckt DFF" name="output_dffs_gen_q_out_ff_1" num_pb="1">
<clock name="CLK" num_pins="1"/>
<input name="D" num_pins="1"/>
<output name="Q" num_pins="1"/>
<T_setup clock="CLK" port="DFF.D" value="10e-12"/>
<T_hold clock="CLK" port="DFF.D" value="10e-12"/>
<T_clock_to_Q clock="CLK" max="10e-12" port="DFF.Q"/>
</pb_type>
<pb_type blif_model=".subckt DFF" name="output_dffs_gen_q_out_ff_2" num_pb="1">
<clock name="CLK" num_pins="1"/>
<input name="D" num_pins="1"/>
<output name="Q" num_pins="1"/>
<T_setup clock="CLK" port="DFF.D" value="10e-12"/>
<T_hold clock="CLK" port="DFF.D" value="10e-12"/>
<T_clock_to_Q clock="CLK" max="10e-12" port="DFF.Q"/>
</pb_type>
<pb_type blif_model=".subckt DFF" name="output_dffs_gen_q_out_ff_3" num_pb="1">
<clock name="CLK" num_pins="1"/>
<input name="D" num_pins="1"/>
<output name="Q" num_pins="1"/>
<T_setup clock="CLK" port="DFF.D" value="10e-12"/>
<T_hold clock="CLK" port="DFF.D" value="10e-12"/>
<T_clock_to_Q clock="CLK" max="10e-12" port="DFF.Q"/>
</pb_type>
<interconnect>
<direct input="output_dffs_gen_q_out_ff_0.Q" name="DSP_INOUT_REGISTERED-out[0]" output="DSP_INOUT_REGISTERED.out[0]"/>
<direct input="output_dffs_gen_q_out_ff_1.Q" name="DSP_INOUT_REGISTERED-out[1]" output="DSP_INOUT_REGISTERED.out[1]"/>
<direct input="output_dffs_gen_q_out_ff_2.Q" name="DSP_INOUT_REGISTERED-out[2]" output="DSP_INOUT_REGISTERED.out[2]"/>
<direct input="output_dffs_gen_q_out_ff_3.Q" name="DSP_INOUT_REGISTERED-out[3]" output="DSP_INOUT_REGISTERED.out[3]"/>
<direct input="input_dffs_gen_q_a_ff_0.Q" name="comb-a[0]" output="comb.a[0]">
<pack_pattern in_port="input_dffs_gen_q_a_ff_0.Q" name="pack-DFF-DSP" out_port="comb.a[0]"/>
</direct>
<direct input="input_dffs_gen_q_a_ff_1.Q" name="comb-a[1]" output="comb.a[1]">
<pack_pattern in_port="input_dffs_gen_q_a_ff_1.Q" name="pack-DFF-DSP" out_port="comb.a[1]"/>
</direct>
<direct input="input_dffs_gen_q_b_ff_0.Q" name="comb-b[0]" output="comb.b[0]">
<pack_pattern in_port="input_dffs_gen_q_b_ff_0.Q" name="pack-DFF-DSP" out_port="comb.b[0]"/>
</direct>
<direct input="input_dffs_gen_q_b_ff_1.Q" name="comb-b[1]" output="comb.b[1]">
<pack_pattern in_port="input_dffs_gen_q_b_ff_1.Q" name="pack-DFF-DSP" out_port="comb.b[1]"/>
</direct>
<direct input="m_ff.Q" name="comb-m" output="comb.m">
<pack_pattern in_port="m_ff.Q" name="pack-DFF-DSP" out_port="comb.m"/>
</direct>
<direct input="DSP_INOUT_REGISTERED.clk" name="input_dffs_gen_q_a_ff_0-CLK" output="input_dffs_gen_q_a_ff_0.CLK"/>
<direct input="DSP_INOUT_REGISTERED.a[0]" name="input_dffs_gen_q_a_ff_0-D" output="input_dffs_gen_q_a_ff_0.D"/>
<direct input="DSP_INOUT_REGISTERED.clk" name="input_dffs_gen_q_a_ff_1-CLK" output="input_dffs_gen_q_a_ff_1.CLK"/>
<direct input="DSP_INOUT_REGISTERED.a[1]" name="input_dffs_gen_q_a_ff_1-D" output="input_dffs_gen_q_a_ff_1.D"/>
<direct input="DSP_INOUT_REGISTERED.clk" name="input_dffs_gen_q_b_ff_0-CLK" output="input_dffs_gen_q_b_ff_0.CLK"/>
<direct input="DSP_INOUT_REGISTERED.b[0]" name="input_dffs_gen_q_b_ff_0-D" output="input_dffs_gen_q_b_ff_0.D"/>
<direct input="DSP_INOUT_REGISTERED.clk" name="input_dffs_gen_q_b_ff_1-CLK" output="input_dffs_gen_q_b_ff_1.CLK"/>
<direct input="DSP_INOUT_REGISTERED.b[1]" name="input_dffs_gen_q_b_ff_1-D" output="input_dffs_gen_q_b_ff_1.D"/>
<direct input="DSP_INOUT_REGISTERED.clk" name="m_ff-CLK" output="m_ff.CLK"/>
<direct input="DSP_INOUT_REGISTERED.m" name="m_ff-D" output="m_ff.D"/>
<direct input="DSP_INOUT_REGISTERED.clk" name="output_dffs_gen_q_out_ff_0-CLK" output="output_dffs_gen_q_out_ff_0.CLK"/>
<direct input="comb.out[0]" name="output_dffs_gen_q_out_ff_0-D" output="output_dffs_gen_q_out_ff_0.D">
<pack_pattern in_port="comb.out[0]" name="pack-DFF-DSP" out_port="output_dffs_gen_q_out_ff_0.D"/>
</direct>
<direct input="DSP_INOUT_REGISTERED.clk" name="output_dffs_gen_q_out_ff_1-CLK" output="output_dffs_gen_q_out_ff_1.CLK"/>
<direct input="comb.out[1]" name="output_dffs_gen_q_out_ff_1-D" output="output_dffs_gen_q_out_ff_1.D">
<pack_pattern in_port="comb.out[1]" name="pack-DFF-DSP" out_port="output_dffs_gen_q_out_ff_1.D"/>
</direct>
<direct input="DSP_INOUT_REGISTERED.clk" name="output_dffs_gen_q_out_ff_2-CLK" output="output_dffs_gen_q_out_ff_2.CLK"/>
<direct input="comb.out[2]" name="output_dffs_gen_q_out_ff_2-D" output="output_dffs_gen_q_out_ff_2.D">
<pack_pattern in_port="comb.out[2]" name="pack-DFF-DSP" out_port="output_dffs_gen_q_out_ff_2.D"/>
</direct>
<direct input="DSP_INOUT_REGISTERED.clk" name="output_dffs_gen_q_out_ff_3-CLK" output="output_dffs_gen_q_out_ff_3.CLK"/>
<direct input="comb.out[3]" name="output_dffs_gen_q_out_ff_3-D" output="output_dffs_gen_q_out_ff_3.D">
<pack_pattern in_port="comb.out[3]" name="pack-DFF-DSP" out_port="output_dffs_gen_q_out_ff_3.D"/>
</direct>
</interconnect>
</pb_type>
<interconnect>
<direct input="dsp_int_regio.out[0]" name="REGISTERED_INOUT-out[0]" output="REGISTERED_INOUT.out[0]"/>
<direct input="dsp_int_regio.out[1]" name="REGISTERED_INOUT-out[1]" output="REGISTERED_INOUT.out[1]"/>
<direct input="dsp_int_regio.out[2]" name="REGISTERED_INOUT-out[2]" output="REGISTERED_INOUT.out[2]"/>
<direct input="dsp_int_regio.out[3]" name="REGISTERED_INOUT-out[3]" output="REGISTERED_INOUT.out[3]"/>
<direct input="REGISTERED_INOUT.a[0]" name="dsp_int_regio-a[0]" output="dsp_int_regio.a[0]"/>
<direct input="REGISTERED_INOUT.a[1]" name="dsp_int_regio-a[1]" output="dsp_int_regio.a[1]"/>
<direct input="REGISTERED_INOUT.b[0]" name="dsp_int_regio-b[0]" output="dsp_int_regio.b[0]"/>
<direct input="REGISTERED_INOUT.b[1]" name="dsp_int_regio-b[1]" output="dsp_int_regio.b[1]"/>
<direct input="REGISTERED_INOUT.clk" name="dsp_int_regio-clk" output="dsp_int_regio.clk"/>
<direct input="REGISTERED_INOUT.m" name="dsp_int_regio-m" output="dsp_int_regio.m"/>
</interconnect>
</pb_type>
<interconnect>
<direct input="REGISTERED_INOUT.out" name="DSP_MODES-out" output="DSP_MODES.out"/>
<direct input="DSP_MODES.a" name="REGISTERED_INOUT-a" output="REGISTERED_INOUT.a"/>
<direct input="DSP_MODES.b" name="REGISTERED_INOUT-b" output="REGISTERED_INOUT.b"/>
<direct input="DSP_MODES.clk" name="REGISTERED_INOUT-clk" output="REGISTERED_INOUT.clk"/>
<direct input="DSP_MODES.m" name="REGISTERED_INOUT-m" output="REGISTERED_INOUT.m"/>
</interconnect>
</mode>
<mode name="REGISTERED_PARTIAL">
<pb_type name="REGISTERED_PARTIAL" num_pb="1">
<clock name="clk" num_pins="1"/>
<input name="a" num_pins="2"/>
<input name="b" num_pins="2"/>
<input name="m" num_pins="1"/>
<output name="out" num_pins="4"/>
<pb_type name="dsp_int_part" num_pb="1">
<clock name="clk" num_pins="1"/>
<input name="a" num_pins="2"/>
<input name="b" num_pins="2"/>
<input name="m" num_pins="1"/>
<output name="out" num_pins="4"/>
<pb_type blif_model=".subckt DSP_COMBINATIONAL" name="comb" num_pb="1">
<input name="a" num_pins="2"/>
<input name="b" num_pins="2"/>
<input name="m" num_pins="1"/>
<output name="out" num_pins="4"/>
<delay_constant in_port="DSP_COMBINATIONAL.a" max="30e-12" out_port="DSP_COMBINATIONAL.out"/>
<delay_constant in_port="DSP_COMBINATIONAL.b" max="30e-12" out_port="DSP_COMBINATIONAL.out"/>
<delay_constant in_port="DSP_COMBINATIONAL.m" max="10e-12" out_port="DSP_COMBINATIONAL.out"/>
</pb_type>
<pb_type blif_model=".subckt DFF" name="dffs_gen_q_a_ff_0" num_pb="1">
<clock name="CLK" num_pins="1"/>
<input name="D" num_pins="1"/>
<output name="Q" num_pins="1"/>
<T_setup clock="CLK" port="DFF.D" value="10e-12"/>
<T_hold clock="CLK" port="DFF.D" value="10e-12"/>
<T_clock_to_Q clock="CLK" max="10e-12" port="DFF.Q"/>
</pb_type>
<pb_type blif_model=".subckt DFF" name="dffs_gen_q_a_ff_1" num_pb="1">
<clock name="CLK" num_pins="1"/>
<input name="D" num_pins="1"/>
<output name="Q" num_pins="1"/>
<T_setup clock="CLK" port="DFF.D" value="10e-12"/>
<T_hold clock="CLK" port="DFF.D" value="10e-12"/>
<T_clock_to_Q clock="CLK" max="10e-12" port="DFF.Q"/>
</pb_type>
<pb_type blif_model=".subckt DFF" name="dffs_gen_q_b_ff_0" num_pb="1">
<clock name="CLK" num_pins="1"/>
<input name="D" num_pins="1"/>
<output name="Q" num_pins="1"/>
<T_setup clock="CLK" port="DFF.D" value="10e-12"/>
<T_hold clock="CLK" port="DFF.D" value="10e-12"/>
<T_clock_to_Q clock="CLK" max="10e-12" port="DFF.Q"/>
</pb_type>
<pb_type blif_model=".subckt DFF" name="dffs_gen_q_b_ff_1" num_pb="1">
<clock name="CLK" num_pins="1"/>
<input name="D" num_pins="1"/>
<output name="Q" num_pins="1"/>
<T_setup clock="CLK" port="DFF.D" value="10e-12"/>
<T_hold clock="CLK" port="DFF.D" value="10e-12"/>
<T_clock_to_Q clock="CLK" max="10e-12" port="DFF.Q"/>
</pb_type>
<interconnect>
<direct input="comb.out[0]" name="DSP_PARTIAL_REGISTERED-out[0]" output="DSP_PARTIAL_REGISTERED.out[0]"/>
<direct input="comb.out[1]" name="DSP_PARTIAL_REGISTERED-out[1]" output="DSP_PARTIAL_REGISTERED.out[1]"/>
<direct input="comb.out[2]" name="DSP_PARTIAL_REGISTERED-out[2]" output="DSP_PARTIAL_REGISTERED.out[2]"/>
<direct input="comb.out[3]" name="DSP_PARTIAL_REGISTERED-out[3]" output="DSP_PARTIAL_REGISTERED.out[3]"/>
<direct input="dffs_gen_q_a_ff_0.Q" name="comb-a[0]" output="comb.a[0]">
<pack_pattern in_port="dffs_gen_q_a_ff_0.Q" name="pack-DFF-DSP" out_port="comb.a[0]"/>
</direct>
<direct input="dffs_gen_q_a_ff_1.Q" name="comb-a[1]" output="comb.a[1]">
<pack_pattern in_port="dffs_gen_q_a_ff_1.Q" name="pack-DFF-DSP" out_port="comb.a[1]"/>
</direct>
<direct input="dffs_gen_q_b_ff_0.Q" name="comb-b[0]" output="comb.b[0]">
<pack_pattern in_port="dffs_gen_q_b_ff_0.Q" name="pack-DFF-DSP" out_port="comb.b[0]"/>
</direct>
<direct input="dffs_gen_q_b_ff_1.Q" name="comb-b[1]" output="comb.b[1]">
<pack_pattern in_port="dffs_gen_q_b_ff_1.Q" name="pack-DFF-DSP" out_port="comb.b[1]"/>
</direct>
<direct input="DSP_PARTIAL_REGISTERED.m" name="comb-m" output="comb.m"/>
<direct input="DSP_PARTIAL_REGISTERED.clk" name="dffs_gen_q_a_ff_0-CLK" output="dffs_gen_q_a_ff_0.CLK"/>
<direct input="DSP_PARTIAL_REGISTERED.a[0]" name="dffs_gen_q_a_ff_0-D" output="dffs_gen_q_a_ff_0.D"/>
<direct input="DSP_PARTIAL_REGISTERED.clk" name="dffs_gen_q_a_ff_1-CLK" output="dffs_gen_q_a_ff_1.CLK"/>
<direct input="DSP_PARTIAL_REGISTERED.a[1]" name="dffs_gen_q_a_ff_1-D" output="dffs_gen_q_a_ff_1.D"/>
<direct input="DSP_PARTIAL_REGISTERED.clk" name="dffs_gen_q_b_ff_0-CLK" output="dffs_gen_q_b_ff_0.CLK"/>
<direct input="DSP_PARTIAL_REGISTERED.b[0]" name="dffs_gen_q_b_ff_0-D" output="dffs_gen_q_b_ff_0.D"/>
<direct input="DSP_PARTIAL_REGISTERED.clk" name="dffs_gen_q_b_ff_1-CLK" output="dffs_gen_q_b_ff_1.CLK"/>
<direct input="DSP_PARTIAL_REGISTERED.b[1]" name="dffs_gen_q_b_ff_1-D" output="dffs_gen_q_b_ff_1.D"/>
</interconnect>
</pb_type>
<interconnect>
<direct input="dsp_int_part.out[0]" name="REGISTERED_PARTIAL-out[0]" output="REGISTERED_PARTIAL.out[0]"/>
<direct input="dsp_int_part.out[1]" name="REGISTERED_PARTIAL-out[1]" output="REGISTERED_PARTIAL.out[1]"/>
<direct input="dsp_int_part.out[2]" name="REGISTERED_PARTIAL-out[2]" output="REGISTERED_PARTIAL.out[2]"/>
<direct input="dsp_int_part.out[3]" name="REGISTERED_PARTIAL-out[3]" output="REGISTERED_PARTIAL.out[3]"/>
<direct input="REGISTERED_PARTIAL.a[0]" name="dsp_int_part-a[0]" output="dsp_int_part.a[0]"/>
<direct input="REGISTERED_PARTIAL.a[1]" name="dsp_int_part-a[1]" output="dsp_int_part.a[1]"/>
<direct input="REGISTERED_PARTIAL.b[0]" name="dsp_int_part-b[0]" output="dsp_int_part.b[0]"/>
<direct input="REGISTERED_PARTIAL.b[1]" name="dsp_int_part-b[1]" output="dsp_int_part.b[1]"/>
<direct input="REGISTERED_PARTIAL.clk" name="dsp_int_part-clk" output="dsp_int_part.clk"/>
<direct input="REGISTERED_PARTIAL.m" name="dsp_int_part-m" output="dsp_int_part.m"/>
</interconnect>
</pb_type>
<interconnect>
<direct input="REGISTERED_PARTIAL.out" name="DSP_MODES-out" output="DSP_MODES.out"/>
<direct input="DSP_MODES.a" name="REGISTERED_PARTIAL-a" output="REGISTERED_PARTIAL.a"/>
<direct input="DSP_MODES.b" name="REGISTERED_PARTIAL-b" output="REGISTERED_PARTIAL.b"/>
<direct input="DSP_MODES.clk" name="REGISTERED_PARTIAL-clk" output="REGISTERED_PARTIAL.clk"/>
<direct input="DSP_MODES.m" name="REGISTERED_PARTIAL-m" output="REGISTERED_PARTIAL.m"/>
</interconnect>
</mode>
</pb_type>
|
Blackbox detection¶
Model of the leaf
pb_type
is generatedLeaf
pb_type
XML is generatedAll dependency models and
pb_type
s are included in the output files
Modes generation¶
All the modes from list defined with
MODES
attributeMode setting is included in
pb_type
generation (correct part of logic is used)Modes connections are generated correctly
Basic logic gates¶
These are some basic logic gates. NOT, AND and NOR are modeled as primitives while XOR is made up of 5 NOR gates.
NOT gate¶
This is an NOT gate
19 20 21 22 23 24 25 26 | module NOT (
input A,
output Y
);
assign Y = ~A;
endmodule
|
The gate model generated by V2X
<?xml version="1.0"?>
<models>
<model name="NOT">
<input_ports>
<port combinational_sink_ports="Y" name="A"/>
</input_ports>
<output_ports>
<port name="Y"/>
</output_ports>
</model>
</models>
The gate pb_type generated by V2X
<?xml version="1.0"?>
<pb_type xmlns:xi="http://www.w3.org/2001/XInclude" blif_model=".subckt NOT" name="NOT" num_pb="1">
<input name="A" num_pins="1"/>
<output name="Y" num_pins="1"/>
</pb_type>
AND gate¶
This is an AND gate
19 20 21 22 23 24 25 26 27 | module AND (
input A,
input B,
output Y
);
assign Y = A & B;
endmodule
|
The gate model generated by V2X
<?xml version="1.0"?>
<models>
<model name="AND">
<input_ports>
<port combinational_sink_ports="Y" name="A"/>
<port combinational_sink_ports="Y" name="B"/>
</input_ports>
<output_ports>
<port name="Y"/>
</output_ports>
</model>
</models>
The gate pb_type generated by V2X
<?xml version="1.0"?>
<pb_type xmlns:xi="http://www.w3.org/2001/XInclude" blif_model=".subckt AND" name="AND" num_pb="1">
<input name="A" num_pins="1"/>
<input name="B" num_pins="1"/>
<output name="Y" num_pins="1"/>
</pb_type>
NOR gate¶
This is an NOR gate
19 20 21 22 23 24 25 26 27 | module NOR (
input A,
input B,
output Y
);
assign Y = ~(A | B);
endmodule
|
The gate model generated by V2X
<?xml version="1.0"?>
<models>
<model name="NOR">
<input_ports>
<port combinational_sink_ports="Y" name="A"/>
<port combinational_sink_ports="Y" name="B"/>
</input_ports>
<output_ports>
<port name="Y"/>
</output_ports>
</model>
</models>
The gate pb_type generated by V2X
<?xml version="1.0"?>
<pb_type xmlns:xi="http://www.w3.org/2001/XInclude" blif_model=".subckt NOR" name="NOR" num_pb="1">
<input name="A" num_pins="1"/>
<input name="B" num_pins="1"/>
<output name="Y" num_pins="1"/>
</pb_type>
XOR gate¶
This is a XOR gate made of NOR gates
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 | `include "./nor/nor.sim.v"
module XOR (
input A,
input B,
output Y
);
wire S00;
NOR nor00 (.A(A), .B(B), .Y(S00));
wire S10;
wire S11;
NOR nor10 (.A(A), .B(S00), .Y(S10));
NOR nor11 (.A(B), .B(S00), .Y(S11));
wire S20;
NOR nor20 (.A(S10), .B(S11), .Y(S20));
NOR nor30 (.A(S20), .B(S20), .Y(Y));
endmodule
|
The gate model generated by V2X
<?xml version="1.0"?>
<models>
<model name="NOR">
<input_ports>
<port combinational_sink_ports="Y" name="A"/>
<port combinational_sink_ports="Y" name="B"/>
</input_ports>
<output_ports>
<port name="Y"/>
</output_ports>
</model>
</models>
The gate pb_type generated by V2X
<?xml version="1.0"?>
<pb_type xmlns:xi="http://www.w3.org/2001/XInclude" name="XOR" num_pb="1">
<input name="A" num_pins="1"/>
<input name="B" num_pins="1"/>
<output name="Y" num_pins="1"/>
<pb_type blif_model=".subckt NOR" name="nor00" num_pb="1">
<input name="A" num_pins="1"/>
<input name="B" num_pins="1"/>
<output name="Y" num_pins="1"/>
</pb_type>
<pb_type blif_model=".subckt NOR" name="nor10" num_pb="1">
<input name="A" num_pins="1"/>
<input name="B" num_pins="1"/>
<output name="Y" num_pins="1"/>
</pb_type>
<pb_type blif_model=".subckt NOR" name="nor11" num_pb="1">
<input name="A" num_pins="1"/>
<input name="B" num_pins="1"/>
<output name="Y" num_pins="1"/>
</pb_type>
<pb_type blif_model=".subckt NOR" name="nor20" num_pb="1">
<input name="A" num_pins="1"/>
<input name="B" num_pins="1"/>
<output name="Y" num_pins="1"/>
</pb_type>
<pb_type blif_model=".subckt NOR" name="nor30" num_pb="1">
<input name="A" num_pins="1"/>
<input name="B" num_pins="1"/>
<output name="Y" num_pins="1"/>
</pb_type>
<interconnect>
<direct input="nor30.Y" name="XOR-Y" output="XOR.Y"/>
<direct input="XOR.A" name="nor00-A" output="nor00.A"/>
<direct input="XOR.B" name="nor00-B" output="nor00.B"/>
<direct input="XOR.A" name="nor10-A" output="nor10.A"/>
<direct input="nor00.Y" name="nor10-B" output="nor10.B"/>
<direct input="XOR.B" name="nor11-A" output="nor11.A"/>
<direct input="nor00.Y" name="nor11-B" output="nor11.B"/>
<direct input="nor10.Y" name="nor20-A" output="nor20.A"/>
<direct input="nor11.Y" name="nor20-B" output="nor20.B"/>
<direct input="nor20.Y" name="nor30-A" output="nor30.A"/>
<direct input="nor20.Y" name="nor30-B" output="nor30.B"/>
</interconnect>
</pb_type>
Forced non-sequential relations to an input¶
This is a case when a macro block consisting of a LUT and an FF is to be modeled in VPR as a single primitive. The block has two outputs: the first one sources at the LUT directly and the second one passes through an external register:
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 | (* whitebox *)
module LUT_FF_MACRO (I0, I1, I2, I3, CLK, Z, QZ);
// LUT inputs
(* NO_SEQ *)
input wire I0;
(* NO_SEQ *)
input wire I1;
(* NO_SEQ *)
input wire I2;
(* NO_SEQ *)
input wire I3;
// Clock input
input wire CLK;
// Combinational LUT output
(* DELAY_CONST_I0="1e-10" *)
(* DELAY_CONST_I1="1e-10" *)
(* DELAY_CONST_I2="1e-10" *)
(* DELAY_CONST_I3="1e-10" *)
output wire Z;
// Registered LUT output
(* DELAY_CONST_I0="2e-10" *)
(* DELAY_CONST_I1="2e-10" *)
(* DELAY_CONST_I2="2e-10" *)
(* DELAY_CONST_I3="2e-10" *)
(* CLK_TO_Q="CLK 1e-10" *)
(* SETUP="CLK 1e-10" *)
(* HOLD="CLK 1e-10" *)
output reg QZ;
// LUT behavioral model
parameter [15:0] INIT = 16'd0;
assign Z = INIT[{I3, I2, I1, I0}];
// FF behavioral model
always @(posedge CLK)
QZ <= Z;
endmodule
|
Since relation of LUT inputs is combinational for one output and sequential for another they have to be defined in a special way as required by VPR (see VTR documentation). Due to the presence of the output register all sequential annotations are moved to the output port. Hence LUT inputs must not mention any clock signal. This can be achieved in V2X by specifying the (* NO_SEQ *) attribute on them. The attribute prevents V2X from annotating input ports with any clock relations.
<?xml version="1.0"?>
<models>
<model name="LUT_FF_MACRO">
<input_ports>
<port is_clock="1" name="CLK"/>
<port combinational_sink_ports="QZ Z" name="I0"/>
<port combinational_sink_ports="QZ Z" name="I1"/>
<port combinational_sink_ports="QZ Z" name="I2"/>
<port combinational_sink_ports="QZ Z" name="I3"/>
</input_ports>
<output_ports>
<port clock="CLK" name="QZ"/>
<port name="Z"/>
</output_ports>
</model>
</models>
<?xml version="1.0"?>
<pb_type xmlns:xi="http://www.w3.org/2001/XInclude" blif_model=".subckt LUT_FF_MACRO" name="LUT_FF_MACRO" num_pb="1">
<clock name="CLK" num_pins="1"/>
<input name="I0" num_pins="1"/>
<input name="I1" num_pins="1"/>
<input name="I2" num_pins="1"/>
<input name="I3" num_pins="1"/>
<output name="QZ" num_pins="1"/>
<output name="Z" num_pins="1"/>
<delay_constant in_port="LUT_FF_MACRO.I0" max="2e-10" out_port="LUT_FF_MACRO.QZ"/>
<delay_constant in_port="LUT_FF_MACRO.I1" max="2e-10" out_port="LUT_FF_MACRO.QZ"/>
<delay_constant in_port="LUT_FF_MACRO.I2" max="2e-10" out_port="LUT_FF_MACRO.QZ"/>
<delay_constant in_port="LUT_FF_MACRO.I3" max="2e-10" out_port="LUT_FF_MACRO.QZ"/>
<delay_constant in_port="LUT_FF_MACRO.I0" max="1e-10" out_port="LUT_FF_MACRO.Z"/>
<delay_constant in_port="LUT_FF_MACRO.I1" max="1e-10" out_port="LUT_FF_MACRO.Z"/>
<delay_constant in_port="LUT_FF_MACRO.I2" max="1e-10" out_port="LUT_FF_MACRO.Z"/>
<delay_constant in_port="LUT_FF_MACRO.I3" max="1e-10" out_port="LUT_FF_MACRO.Z"/>
<T_setup clock="CLK" port="LUT_FF_MACRO.QZ" value="1e-10"/>
<T_hold clock="CLK" port="LUT_FF_MACRO.QZ" value="1e-10"/>
<T_clock_to_Q clock="CLK" max="1e-10" port="LUT_FF_MACRO.QZ"/>
</pb_type>
Pack pattern annotation¶
This example shows that v2x prevents annotating a top-level port of a pb_type when a net of that port is forking. This enables using pack patterns, e.g., for LUT to FF connections when the LUT output is also connected to a top-level output port.
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 | `include "./lut4/lut4.sim.v"
`include "./dff/dff.sim.v"
module PACK_PATTERN (
CLK,
LUT_IN,
LUT_OUT,
DFF_OUT
);
input wire CLK;
input wire [3:0] LUT_IN;
output wire LUT_OUT;
output wire DFF_OUT;
(* pack *)
wire w;
LUT4 lut (.I(LUT_IN), .O(w));
DFF dff (.CLK(CLK), .D(w), .Q(DFF_OUT));
assign LUT_OUT = w;
endmodule
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 | <?xml version="1.0"?>
<models>
<model name="DFF">
<input_ports>
<port is_clock="1" name="CLK"/>
<port clock="CLK" name="D"/>
</input_ports>
<output_ports>
<port clock="CLK" name="Q"/>
</output_ports>
</model>
<model name="LUT4">
<input_ports>
<port combinational_sink_ports="O" name="I"/>
</input_ports>
<output_ports>
<port name="O"/>
</output_ports>
</model>
</models>
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 | <?xml version="1.0"?>
<pb_type xmlns:xi="http://www.w3.org/2001/XInclude" name="PACK_PATTERN" num_pb="1">
<clock name="CLK" num_pins="1"/>
<input name="LUT_IN" num_pins="4"/>
<output name="DFF_OUT" num_pins="1"/>
<output name="LUT_OUT" num_pins="1"/>
<pb_type blif_model=".subckt DFF" name="dff" num_pb="1">
<clock name="CLK" num_pins="1"/>
<input name="D" num_pins="1"/>
<output name="Q" num_pins="1"/>
<T_setup clock="CLK" port="DFF.D" value="10e-12"/>
<T_hold clock="CLK" port="DFF.D" value="10e-12"/>
<T_clock_to_Q clock="CLK" max="10e-12" port="DFF.Q"/>
</pb_type>
<pb_type blif_model=".subckt LUT4" name="lut" num_pb="1">
<input name="I" num_pins="4"/>
<output name="O" num_pins="1"/>
<delay_matrix in_port="LUT4.I" out_port="LUT4.O" type="max">
30e-12 20e-12 11e-12 3e-12
</delay_matrix>
</pb_type>
<interconnect>
<direct input="dff.Q" name="PACK_PATTERN-DFF_OUT" output="PACK_PATTERN.DFF_OUT"/>
<direct input="lut.O" name="PACK_PATTERN-LUT_OUT" output="PACK_PATTERN.LUT_OUT"/>
<direct input="PACK_PATTERN.CLK" name="dff-CLK" output="dff.CLK"/>
<direct input="lut.O" name="dff-D" output="dff.D">
<pack_pattern in_port="lut.O" name="pack-00000000000000000000000000000001" out_port="dff.D"/>
</direct>
<direct input="PACK_PATTERN.LUT_IN[0]" name="lut-I[0]" output="lut.I[0]"/>
<direct input="PACK_PATTERN.LUT_IN[1]" name="lut-I[1]" output="lut.I[1]"/>
<direct input="PACK_PATTERN.LUT_IN[2]" name="lut-I[2]" output="lut.I[2]"/>
<direct input="PACK_PATTERN.LUT_IN[3]" name="lut-I[3]" output="lut.I[3]"/>
</interconnect>
</pb_type>
|
Verilog to Routing¶
The following shows some examples taken from the Verilog to Routing documentation.
Primitive Block Timing Modeling Tutorial¶
The following shows examples taken from the Primitive Block Timing Modeling Tutorial in the Verilog to Routing documentation.
Classical D-Flip-Flop test¶
An example of the classical D-Flip-Flop shown in Figure 60 - DFF
.
Fig. 60 - DFF
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 | `ifndef DFF
`define DFF
(* whitebox *)
module DFF (D, CLK, Q);
input wire CLK;
(* SETUP="CLK 10e-12" *)
(* HOLD="CLK 10e-12" *)
input wire D;
(* CLK_TO_Q="CLK 10e-12" *)
output reg Q;
always @ ( posedge CLK ) begin
Q <= D;
end
`ifndef YOSYS
specify
specparam
tplh$CLK$QP = 1.0,
tphl$CLK$QP = 1.0,
tplh$CLK$QN = 1.0,
tphl$CLK$QN = 1.0,
tsetup$D$CLK = 1.0,
thold$D$CLK = 1.0,
tminpwl$CLK = 1.0,
tminpwh$CLK = 1.0;
// PATH DELAYS
if (flag)
// Polarity of QP is positive referenced to D
(posedge CLK *> (QP +: D)) = (tplh$CLK$QP, tphl$CLK$QP);
if (flag)
// Polarity of QN is negative referenced to D
(posedge CLK *> (QN -: D)) = (tplh$CLK$QN, tphl$CLK$QN);
// SETUP AND HOLD CHECKS
$setuphold(posedge CLK &&& (flag == 1), posedge D, tsetup$D$CLK, thold$D$CLK, NOTIFIER);
$setuphold(posedge CLK &&& (flag == 1), negedge D, tsetup$D$CLK, thold$D$CLK, NOTIFIER);
// MINIMUM WIDTH CHECKING
$width(negedge CLK, tminpwl$CLK, 0, NOTIFIER);
$width(posedge CLK, tminpwh$CLK, 0, NOTIFIER);
endspecify
`endif
endmodule
`endif
|
1 2 3 4 5 6 7 8 9 10 11 12 | <?xml version="1.0"?>
<models>
<model name="DFF">
<input_ports>
<port is_clock="1" name="CLK"/>
<port clock="CLK" name="D"/>
</input_ports>
<output_ports>
<port clock="CLK" name="Q"/>
</output_ports>
</model>
</models>
|
1 2 3 4 5 6 7 8 9 | <?xml version="1.0"?>
<pb_type xmlns:xi="http://www.w3.org/2001/XInclude" blif_model=".subckt DFF" name="DFF" num_pb="1">
<clock name="CLK" num_pins="1"/>
<input name="D" num_pins="1"/>
<output name="Q" num_pins="1"/>
<T_setup clock="CLK" port="DFF.D" value="10e-12"/>
<T_hold clock="CLK" port="DFF.D" value="10e-12"/>
<T_clock_to_Q clock="CLK" max="10e-12" port="DFF.Q"/>
</pb_type>
|
Clock associations inference¶
Automatic inference is signal is associated with any clock and include the info in the model
Automatic clock detection (signals named
clk
are considered as clocks)
Blackbox detection¶
Model of the leaf
pb_type
is generatedLeaf
pb_type
XML is generated
Timings¶
All the timings defined for wires with attributes should be included in
pb_type
XML
Full Adder Example¶
An example of the classical combinational “full adder” circuit shown in Figure 60 - Full Adder
of the “Combinational block” section in the Primitive Block Timing Modeling Tutorial of the Verilog to Routing documentation and reproduced below.
Fig. 59 - Full Adder
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 | (* whitebox *)
module ADDER (
a, b, cin,
sum, cout
);
input wire a;
input wire b;
(* carry = "ADDER" *)
input wire cin;
(* DELAY_CONST_a = "300e-12" *)
(* DELAY_CONST_b = "300e-12" *)
(* DELAY_CONST_cin = "300e-12" *)
output wire sum;
(* carry = "ADDER" *)
(* DELAY_CONST_a = "300e-12" *)
(* DELAY_CONST_b = "300e-12" *)
(* DELAY_CONST_cin = "10e-12" *)
output wire cout;
// Full adder combinational logic
assign sum = a ^ b ^ cin;
assign cout = ((a ^ b) & cin) | (a & b);
// Timing parameters, not supported by Yosys at the moment.
`ifndef YOSYS
`timescale 1ps/1ps
specify
specparam T1 300;
specparam T2 10;
// (input->output) min:typ:max
(a => sum) = T1;
(b => sum) = T1;
(cin => sum) = T1;
(a => cout) = T1;
(b => cout) = T1;
(cin => cout) = T2;
endspecify
`endif
endmodule
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 | <?xml version="1.0"?>
<models>
<model name="ADDER">
<input_ports>
<port combinational_sink_ports="cout sum" name="a"/>
<port combinational_sink_ports="cout sum" name="b"/>
<port combinational_sink_ports="cout sum" name="cin"/>
</input_ports>
<output_ports>
<port name="cout"/>
<port name="sum"/>
</output_ports>
</model>
</models>
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 | <?xml version="1.0"?>
<pb_type xmlns:xi="http://www.w3.org/2001/XInclude" blif_model=".subckt ADDER" name="ADDER" num_pb="1">
<input name="a" num_pins="1"/>
<input name="b" num_pins="1"/>
<input name="cin" num_pins="1"/>
<output name="cout" num_pins="1"/>
<output name="sum" num_pins="1"/>
<delay_constant in_port="ADDER.a" max="300e-12" out_port="ADDER.cout"/>
<delay_constant in_port="ADDER.b" max="300e-12" out_port="ADDER.cout"/>
<delay_constant in_port="ADDER.cin" max="10e-12" out_port="ADDER.cout"/>
<delay_constant in_port="ADDER.a" max="300e-12" out_port="ADDER.sum"/>
<delay_constant in_port="ADDER.b" max="300e-12" out_port="ADDER.sum"/>
<delay_constant in_port="ADDER.cin" max="300e-12" out_port="ADDER.sum"/>
</pb_type>
|
Detection of combinational connections¶
Output has combinational connection with input
Blackbox detection¶
Model of the leaf
pb_type
is generatedLeaf
pb_type
XML is generated
Timings¶
All the timings defined for wires with attributes should be included in
pb_type
XML
LUT with FlipFlop Example¶
An example of the classical LUT with FlipFlop pair shown in Figure 31 - Pack Pattern Example
of the “Architecture Reference” section of the Verilog to Routing Documentation demonstrating the <pack_pattern> tag.

Fig. 31 - Pack Pattern Example
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 | `include "./lut4/lut4.sim.v"
`include "./dff/dff.sim.v"
`include "./omux/omux.sim.v"
module PAIR (
I,
CLK,
O
);
input wire [3:0] I;
input wire CLK;
output wire O;
(* pack="LUT2FF" *)
wire lut_out;
LUT4 lut (.I(I), .O(lut_out));
wire ff_out;
DFF dff (.CLK(CLK), .D(lut_out), .Q(ff_out));
parameter FF_BYPASS = "F";
OMUX #(.MODE(FF_BYPASS)) mux(.L(lut_out), .F(ff_out), .O(O));
endmodule
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 | <?xml version="1.0"?>
<models>
<model name="DFF">
<input_ports>
<port is_clock="1" name="CLK"/>
<port clock="CLK" name="D"/>
</input_ports>
<output_ports>
<port clock="CLK" name="Q"/>
</output_ports>
</model>
<model name="LUT4">
<input_ports>
<port combinational_sink_ports="O" name="I"/>
</input_ports>
<output_ports>
<port name="O"/>
</output_ports>
</model>
</models>
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 | <?xml version="1.0"?>
<pb_type xmlns:xi="http://www.w3.org/2001/XInclude" name="PAIR" num_pb="1">
<clock name="CLK" num_pins="1"/>
<input name="I" num_pins="4"/>
<output name="O" num_pins="1"/>
<pb_type blif_model=".subckt DFF" name="dff" num_pb="1">
<clock name="CLK" num_pins="1"/>
<input name="D" num_pins="1"/>
<output name="Q" num_pins="1"/>
<T_setup clock="CLK" port="DFF.D" value="10e-12"/>
<T_hold clock="CLK" port="DFF.D" value="10e-12"/>
<T_clock_to_Q clock="CLK" max="10e-12" port="DFF.Q"/>
</pb_type>
<pb_type blif_model=".subckt LUT4" name="lut" num_pb="1">
<input name="I" num_pins="4"/>
<output name="O" num_pins="1"/>
<delay_matrix in_port="LUT4.I" out_port="LUT4.O" type="max">
30e-12 20e-12 11e-12 3e-12
</delay_matrix>
</pb_type>
<interconnect>
<mux input="dff.Q lut.O" name="mux" output="PAIR.O">
<metadata>
<meta name="fasm_mux">
dff.Q : mux.F
lut.O : mux.L
</meta>
<meta name="type">bel</meta>
<meta name="subtype">routing</meta>
</metadata>
</mux>
<direct input="PAIR.CLK" name="dff-CLK" output="dff.CLK"/>
<direct input="lut.O" name="dff-D" output="dff.D">
<pack_pattern in_port="lut.O" name="pack-LUT2FF" out_port="dff.D"/>
</direct>
<direct input="PAIR.I[0]" name="lut-I[0]" output="lut.I[0]"/>
<direct input="PAIR.I[1]" name="lut-I[1]" output="lut.I[1]"/>
<direct input="PAIR.I[2]" name="lut-I[2]" output="lut.I[2]"/>
<direct input="PAIR.I[3]" name="lut-I[3]" output="lut.I[3]"/>
</interconnect>
</pb_type>
|
Blackbox detection¶
Model of the leaf
pb_type
is generatedLeaf
pb_type
XML is generatedAll dependency models and
pb_type
s are included in the output files
Carry chain inference¶
pack_pattern
inference -pack_pattern
s defined on wires withpack
attributes should be propagated topb_type
XMLs